23 research outputs found
Oligodendrocyte-derived LGI3 and its receptor ADAM23 organize juxtaparanodal Kv1 channel clustering for short-term synaptic plasticity
Neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism, involve altered synaptic transmission and plasticity. Functional characterization of their associated genes is vital for understanding physio-pathological brain functions. LGI3 is a recently recognized ID-associated gene encoding a secretory protein related to an epilepsy-gene product, LGI1. Here, we find that LGI3 is uniquely secreted from oligodendrocytes in the brain and enriched at juxtaparanodes of myelinated axons, forming nanoscale subclusters. Proteomic analysis using epitope-tagged Lgi3 knockin mice shows that LGI3 uses ADAM23 as a receptor and selectively co-assembles with Kv1 channels. A lack of Lgi3 in mice disrupts juxtaparanodal clustering of ADAM23 and Kv1 channels and suppresses Kv1-channel-mediated short-term synaptic plasticity. Collectively, this study identifies an extracellular organizer of juxtaparanodal Kv1 channel clustering for finely tuned synaptic transmission. Given the defective secretion of the LGI3 missense variant, we propose a molecular pathway, the juxtaparanodal LGI3-ADAM23-Kv1 channel, for understanding neurodevelopmental disorders.<br/
Human gestational N‐methyl‐d‐aspartate receptor autoantibodies impair neonatal murine brain function
Objective: Maternal autoantibodies are a risk factor for impaired brain development in offspring. Antibodies (ABs) against the NR1 (GluN1) subunit of the N-methyl-d-aspartate receptor (NMDAR) are among the most frequently diagnosed anti-neuronal surface ABs, yet little is known about effects on fetal development during pregnancy.
Methods: We established a murine model of in utero exposure to human recombinant NR1 and isotype-matched nonreactive control ABs. Pregnant C57BL/6J mice were intraperitoneally injected on embryonic days 13 and 17 each with 240μg of human monoclonal ABs. Offspring were investigated for acute and chronic effects on NMDAR function, brain development, and behavior.
Results: Transferred NR1 ABs enriched in the fetus and bound to synaptic structures in the fetal brain. Density of NMDAR was considerably reduced (up to -49.2%) and electrophysiological properties were altered, reflected by decreased amplitudes of spontaneous excitatory postsynaptic currents in young neonates (-34.4%). NR1 AB-treated animals displayed increased early postnatal mortality (+27.2%), impaired neurodevelopmental reflexes, altered blood pH, and reduced bodyweight. During adolescence and adulthood, animals showed hyperactivity (+27.8% median activity over 14 days), lower anxiety, and impaired sensorimotor gating. NR1 ABs caused long-lasting neuropathological effects also in aged mice (10 months), such as reduced volumes of cerebellum, midbrain, and brainstem.
Interpretation: The data collectively support a model in which asymptomatic mothers can harbor low-level pathogenic human NR1 ABs that are diaplacentally transferred, causing neurotoxic effects on neonatal development. Thus, AB-mediated network changes may represent a potentially treatable neurodevelopmental congenital brain disorder contributing to lifelong neuropsychiatric morbidity in affected children
LGI1–ADAM22–MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention
Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1–ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4–Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22–MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1–ADAM22–MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention
Preclinical safety and efficacy of a therapeutic antibody that targets SARS-CoV-2 at the sotrovimab face but is escaped by Omicron
The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2
Encephalitis patient-derived monoclonal GABAA receptor antibodies cause epileptic seizures
Autoantibodies targeting the GABAA receptor (GABAAR) hallmark an autoimmune encephalitis presenting with frequent seizures and psychomotor abnormalities. Their pathogenic role is still not well-defined, given the common overlap with further autoantibodies and the lack of patient-derived mAbs. Five GABAAR mAbs from cerebrospinal fluid cells bound to various epitopes involving the α1 and γ2 receptor subunits, with variable binding strength and partial competition. mAbs selectively reduced GABAergic currents in neuronal cultures without causing receptor internalization. Cerebroventricular infusion of GABAAR mAbs and Fab fragments into rodents induced a severe phenotype with seizures and increased mortality, reminiscent of encephalitis patients' symptoms. Our results demonstrate direct pathogenicity of autoantibodies on GABAARs independent of Fc-mediated effector functions and provide an animal model for GABAAR encephalitis. They further provide the scientific rationale for clinical treatments using antibody depletion and can serve as tools for the development of antibody-selective immunotherapies
Interaction of ion channels and receptors with PDZ domain proteins
The complex anatomy of neurons demands a high degree of functional organization. Therefore, membrane receptors and ion channels are often localized to selected subcellular sites and coupled to specific signal transduction machineries. PDZ domains have come into focus as protein interaction modules that mediate the binding of a class of submembraneous proteins to membrane receptors and ion channels and thus subserve these organizational aspects. The structures of two PDZ domains have been resolved, which has led to a structural understanding of the specificity of interactions of various PDZ domains with their respective partners. The functional implications of PDZ domain interactions are now being addressed in vitro and in vivo
The gene for the principal AMPA receptor subunit GluR-B: organization and sequences for alternatively spliced and edited transcripts
The murine gene encoding the GluR-B subunit of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors was characterized with respect to exon-intron organization, transcriptional start site, alternatively spliced transcripts, and adenosine to guanosine substitutions between gene and complementary DNA sequence. The GluR-B gene spans > 90 kilobase pairs and harbors 17 exons. Transcription appears to initiate approximately 430 nucleotides upstream of the translational start codon, with no intron in the 5-untranslated region of the gene. Four alternatively spliced mRNAs are generated from the primary GluR-B transcript, two containing the modules Flip and Flop, and another two with alternate C-terminal coding sequence. The major GluR-B mRNAs in murine brain, 4 and 6 kilobase differ in the length of their 3-untranslated region