72 research outputs found

    Changes in microbial (Bacteria and Archaea) plankton community structure after artificial dispersal in grazer-free microcosms

    Get PDF
    Microbes are considered to have a global distribution due to their high dispersal capabilities. However, our knowledge of the way geographically distant microbial communities assemble after dispersal in a new environment is limited. In this study, we examined whether communities would converge because similar taxa would be selected under the same environmental conditions, or would diverge because of initial community composition, after artificial dispersal. To this aim, a microcosm experiment was performed, in which the temporal changes in the composition and diversity of different prokaryoplankton assemblages from three distant geographic coastal areas (Banyuls-sur-Mer in northwest Mediterranean Sea, Pagasitikos Gulf in northeast Mediterranean and Woods Hole, MA, USA in the northwest Atlantic), were studied. Diversity was investigated using amplicon pyrosequencing of the V1-V3 hypervariable regions of the 16S rRNA. The three assemblages were grown separately in particle free and autoclaved Banyuls-sur-mer seawater at 18 °C in the dark. We found that the variability of prokaryoplankton community diversity (expressed as richness, evenness and dominance) as well as the composition were driven by patterns observed in Bacteria. Regarding community composition, similarities were found between treatments at family level. However, at the OTU level microbial communities from the three different original locations diverge rather than converge during incubation. It is suggested that slight differences in the composition of the initial prokaryoplankton communities, resulted in separate clusters the following days even when growth took place under identical abiotic conditions

    Plankton Microorganisms Coinciding with Two Consecutive Mass Fish Kills in a Newly Reconstructed Lake

    Get PDF
    Lake Karla, Greece, was dried up in 1962 and its refilling started in 2009. We examined the Cyanobacteria and unicellular eukaryotes found during two fish kill incidents, in March and April 2010, in order to detect possible causative agents. Both microscopic and molecular (16S/18S rRNA gene diversity) identification were applied. Potentially toxic Cyanobacteria included representatives of the Planktothrix and Anabaena groups. Known toxic eukaryotes or parasites related to fish kill events were Prymnesium parvum and Pfiesteria cf. piscicida, the latter being reported in an inland lake for the second time. Other potentially harmful microorganisms, for fish and other aquatic life, included representatives of Fungi, Mesomycetozoa, Alveolata, and Heterokontophyta (stramenopiles). In addition, Euglenophyta, Chlorophyta, and diatoms were represented by species indicative of hypertrophic conditions. The pioneers of L. Karla's plankton during the first months of its water refilling process included species that could cause the two observed fish kill events

    Core vs. diet -associated and postprandial bacterial communities of the rainbow trout (Oncorhynchus mykiss) midgut and feaces

    Get PDF
    ACKNOWLEDGMENTS: Eleni Mente was awarded a visiting fellowship by Marine Alliance for Science and Technology Scotland (MASTS). Part of Eleni’s Nikouli’s work in this paper was carried out under the program “Scholarships of IKY in the Marine and Inland Management of Water Resources” and was co-funded by EEA grants– Financial Mechanism 2009-2014 (85%) and the General Secretariat for Investments and Development (15%). The authors declare no competing interests.Peer reviewedPublisher PD

    Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins

    Get PDF
    Background: The deep-sea hypersaline anoxic basins (DHABs) of the Mediterranean (water depth similar to 3500 m) are some of the most extreme oceanic habitats known. Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB haloclines and brines, loriciferans are the only metazoan reported to inhabit the anoxic DHAB brines. Our goal was to further investigate metazoan communities in DHAB haloclines and brines. Results: We report observations from sediments of three DHAB (Urania, Discovery, L'Atalante) haloclines, comparing these to observations from sediments underlying normoxic waters of typical Mediterranean salinity. Due to technical difficulties, sampling of the brines was not possible. Morphotype analysis indicates nematodes are the most abundant taxon; crustaceans, loriciferans and bryozoans were also noted. Among nematodes, Daptonema was the most abundant genus; three morphotypes were noted with a degree of endemicity. The majority of rRNA sequences were from planktonic taxa, suggesting that at least some individual metazoans were preserved and inactive. Nematode abundance data, in some cases determined from direct counts of sediments incubated in situ with CellTracker (TM) Green, was patchy but generally indicates the highest abundances in either normoxic control samples or in upper halocline samples; nematodes were absent or very rare in lower halocline samples. Ultrastructural analysis indicates the nematodes in L'Atalante normoxic control sediments were fit, while specimens from L'Atalante upper halocline were healthy or had only recently died and those from the lower halocline had no identifiable organelles. Loriciferans, which were only rarely encountered, were found in both normoxic control samples as well as in Discovery and L'Atalante haloclines. It is not clear how a metazoan taxon could remain viable under this wide range of conditions. Conclusions: We document a community of living nematodes in normoxic, normal saline deep-sea Mediterranean sediments and in the upper halocline portions of the DHABs. Occurrences of nematodes in mid-halocline and lower halocline samples did not provide compelling evidence of a living community in those zones. The possibility of a viable metazoan community in brines of DHABs is not supported by our data at this time

    Haematococcus: a successful air-dispersed colonist in ephemeral waters is rarelyfound in phytoplankton communities

    Get PDF
    In a literature search, the presence of Haematococcus in phytoplankton communities and its biogeography were investigated. Haematococcus, although showing a wide biogeographical distribution, has been rarely found in phytoplankton communities. Simultaneously, the colonization potential of air-dispersed Haematococcus in ephemeral waters and its interactions with coexisting phytoplankton taxa were examined by microscopy and molecular methods. Haematococcus was a successful colonist, appearing among the first taxa in the experimental containers. According to principal component analysis, Haematococcus growth rate was negatively correlated with the abundance and species richness of the other autotrophs. Furthermore, a negative correlation between Haematococcus and Chlamydomonas and a positive one between Haematococcus and Chlorella were found. Overall, Haematococcus appears to be an effective air-dispersed alga that can successfully colonize and establish populations in small ephemeral water bodies. However, its absence from phytoplankton in larger permanent water bodies could be related to its high light requirements, its competitive disadvantages against other algae, and the grazing pressures from predators. The results of our study suggest a life strategy based on adaptation to higher light intensities in very shallow waters compared with optical dense lakes. Therefore, ephemeral waters are the regular habitat for Haematococcus instead of being “stepping stones” for the colonization of lake phytoplankton

    Changes in Heterotrophic Picoplankton Community Structure after Induction of a Phytoplankton Bloom under Different Light Regimes

    Get PDF
    Bacterial and archaeal diversity and succession were studied during a mesocosm experiment that investigated whether changing light regimes could affect the onset of phytoplankton blooms. For this, 454-pyrosequencing of the bacterial V1-V3 and archaeal V3-V9 16S rRNA regions was performed in samples collected from four mesocosms receiving different light irradiances at the beginning and the end of the experiment and during phytoplankton growth. In total, 46 bacterial operational taxonomic units (OTUs) with ≥1% relative abundance occurred (22-34 OTUs per mesocosm). OTUs were affiliated mainly with Rhodobacteraceae, Flavobacteriaceae and Alteromonadaceae. The four mesocosms shared 11 abundant OTUs. Dominance increased at the beginning of phytoplankton growth in all treatments and decreased thereafter. Maximum dominance was found in the mesocosms with high irradiances. Overall, specific bacterial OTUs had different responses in terms of relative abundance under in situ and high light intensities, and an early phytoplankton bloom resulted in different bacterial community structures both at high (family) and low (OTU) taxonomic levels. Thus, bacterial community structure and succession are affected by light regime, both directly and indirectly, which may have implications for an ecosystem's response to environmental changes

    Bacterial biofilm development during experimental degradation of <em>Melicertus kerathurus</em> exoskeleton in seawater

    Get PDF
    Chitinolytic bacteria are widespread in marine and terrestrial environment, and this is rather a reflection of their principle growth substrate’s ubiquity, chitin, in our planet. In this paper, we investigated the development of naturally occurring bacterial biofilms on the exoskeleton of the shrimp Melicertus kerathurus during its degradation in sea water. During a 12-day experiment with exoskeleton fragments in batch cultures containing only sea water as the growth medium at 18 °C in darkness, we analysed the formation and succession of biofilms by scanning electron microscopy and 16S rRNA gene diversity by next generation sequencing. Bacteria belonging to the γ- and α-Proteobacteria and Bacteroidetes showed marked (less or more than 10%) changes in their relative abundance from the beginning of the experiment. These bacterial taxa related to known chitinolytic bacteria were the Pseudolateromonas porphyrae, Halomonas aquamarina, Reinekea aestuarii, Colwellia asteriadis and Vibrio crassostreae. These bacteria could be considered as appropriate candidates for the degradation of chitinous crustacean waste from the seafood industry as they dominated in the biofilms developed on the shrimp’s exoskeleton in natural sea water with no added substrates and the degradation of the shrimp exoskeleton was also evidenced

    Microbiota and Cyanotoxin Content of Retail Spirulina Supplements and Spirulina Supplemented Foods

    Get PDF
    [EN]Cyanobacterial biomass such as spirulina (Arthrospira spp.) is widely available as a food supplement and can also be added to foods as a nutritionally beneficial ingredient. Spirulina is often produced in open ponds, which are vulnerable to contamination by various microorganisms, including some toxin-producing cyanobacteria. This study examined the microbial population of commercially available spirulina products including for the presence of cyanobacterial toxins. Five products (two supplements, three foods) were examined. The microbial populations were determined by culture methods, followed by identification of isolates using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), and by 16S rRNA amplicon sequencing of the products themselves and of the total growth on the enumeration plates. Toxin analysis was carried out by enzyme-linked immunosorbent assay (ELISA). Several potentially pathogenic bacteria were detected in the products, including Bacillus cereus and Klebsiella pneumoniae. Microcystin toxins were detected in all the products at levels that could lead to consumers exceeding their recommended daily limits. Substantial differences were observed in the identifications obtained using amplicon sequencing and MALDI-TOF, particularly between closely related Bacillus spp. The study showed that there are microbiological safety issues associated with commercial spirulina products that should be addressed, and these are most likely associated with the normal means of production in open ponds.S

    Tenebrio molitor larvae meal inclusion affects hepatic proteome and apoptosis and/or autophagy of three farmed fish species

    Get PDF
    Acknowledgements Financial support for the trial on European sea bass was provided by the AQUAEXEL Project PROINSECTLIFE (Ref. No. 0013/03/05/15B), the AQUAEXEL Project INDIFISH (Ref. No. 0125/08/05/15/TNA), and by the University of Turin (ex 60%) Grant (Es. fn. 2014). NP (Scholarship Code: 1752) has been fnancially supported by the General Secretariat for Research and Technology (GSRT) of Greece and the Hellenic Foundation for Research and Innovation (HFRI) and MM by the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432) as implemented by the State Scholarships Foundation (ΙΚΥ). Tanks to Evelyn Argo and Craig Pattinson (University of Aberdeen) for providing help with 2DE. EM was fnancially supported by Marine Alliance for Science and Technology Scotland (MASTS) visiting Fellowship.Peer reviewedPublisher PD
    corecore