673 research outputs found

    Three-dimensional Mapping of CDM Substructure at Submillimeter Wavelengths

    Full text link
    The cold dark matter (CDM) structure formation model predicts that about 5-10 percent of a typical galactic halo of mass \sim 10^{12} \ms is in substructures with masses \lesssim 10^8 \ms. To directly detect such substructures, we propose to observe dust continuum emission from a strongly lensed QSO-host galaxy using a large submillimeter interferometer array with a high angular resolution of ∌0.01\sim 0.01arcsec such as the planned Atacama Large Submillimeter Array (ALMA). To assess their observational feasibility, we numerically simulate millilensing of an extended circular source by a CDM substructure modeled as a tidally truncated singular isothermal sphere (SIS) embedded in a typical QSO-galaxy lens system, B1422+231, modeled as a singular isothermal ellipsoid (SIE) with an external constant shear and a constant convergence. Assuming an angular resolution of 0.01arcsec, we find that the angular positions of \sim 10^8 \ms substructures at several kpc from the center of the macrolens halo can be directly measured if the size of the dust continuum emission region and the gradient of the surface brightness at the position of the perturber are sufficiently large. From the astrometric shift on a scale of a few times 10 10~mas of an image perturbed by a subhalo with respect to an unperturbed macrolensed image, we can break the degeneracy between subhalo mass and distance provided that macrolensing parameters are determined from positions and fluxes of multiple images.Comment: 7 pages, 7 EPS files. An assessment of our assumption of constancy in shear and convergence has been included. Version accepted for publication in Ap

    Constraints on the Inner Mass Profiles of Lensing Galaxies from Missing Odd Images

    Full text link
    Most gravitational lens systems consist of two or four observable images. The absence of detectable odd images allows us to place a lower limit on the power-law slope of the inner mass profile of lensing galaxies. Using a sample of six two-image radio-loud lens systems and assuming a singular power-law surface density (Sigma proportional to r^{-beta}) for the inner several kpc of the mass distribution, we find that there is less than a 10% probability that the data are consistent with profile slopes beta < 0.80. Furthermore, individual mass modeling yields beta > 0.85 for B0739+366 and beta > 0.91 for B1030+074. Modeling central black holes as additional point masses changes the constraints in these systems to beta > 0.84 and beta > 0.83, respectively. The inner mass profiles of lensing galaxies are therefore not much shallower than isothermal.Comment: Final published version, minor typos corrected, 13 page

    Stable Interpolation with Isotropic and Anisotropic Gaussians Using Hermite Generating Function

    Get PDF

    Modeling of water balance response to an extreme future scenario in the Ötztal catchment, Austria

    Get PDF
    The aim of the study was to investigate the impact of climate change on the water balance of the Ötztaler Ache catchment in Tyrol, Austria. For this purpose the conceptual hydrological model HBV-D REG was applied. First, the model was calibrated and validated using current observed climate and discharge data. Second, the calibrated model was applied with reanalysis data. Third, downscaled climate scenarios from 2010 to 2099 served as input data to the HBV-D REG. Thereby two extreme land cover scenarios were considered: for water balance modeling a constant glacier coverage from today and additionally for runoff simulations a complete loss of glaciered area. The downscaled climate data were generated with the expanded downscaling method. Scenario simulations indicated an increase in annual areal temperature by 3.4 °C and a slight decrease in annual areal precipitation by 89 mm in the next one hundred years. According to the hydrological modeling, these climate changes caused an increase in evapotranspiration and a decrease in snow coverage. Furthermore model simulations showed an increase in winter and spring runoff, whereas summer runoff was highly sensitive to glacier coverage and decreased with complete loss of glacier coverage

    Probing Dark Matter Substructure in Lens Galaxies

    Get PDF
    We investigate the effects of numerous dark matter subhalos in a galaxy-sized halo on the events of strong lensing, to assess their presence as expected from the cold dark matter scenario. Lens galaxies are represented by a smooth ellipsoid in an external shear field and additional cold dark matter subhalos taken from Monte Carlo realizations which accord with recent N-body results. We also consider other possible perturbers, globular clusters and luminous dwarf satellites, for comparison. We then apply the models to the particular lens systems with four images, B1422+231 and PG1115+080, for which smooth lens models are unable to reproduce both the positions of the images and their radio flux ratios or dust-free optical flux ratios simultaneously. We show that the perturbations by both globular clusters and dwarf satellites are too small to change the flux ratios, whereas cold dark matter subhalos are most likely perturbers to reproduce the observed flux ratios in a statistically significant manner. This result suggests us the presence of numerous subhalos in lens galaxies, which is consistent with the results of cosmological N-body simulations.Comment: 19 pages, including 5 figures, ApJ in pres

    New Modeling of the Lensing Galaxy and Cluster of Q0957+561: Implications for the Global Value of the Hubble Constant

    Get PDF
    The gravitational lens 0957+561 is modeled utilizing recent observations of the galaxy and the cluster as well as previous VLBI radio data which have been re-analyzed recently. The galaxy is modeled by a power-law elliptical mass density with a small core while the cluster is modeled by a non-singular power-law sphere as indicated by recent observations. Using all of the current available data, the best-fit model has a reduced chi-squared of approximately 6 where the chi-squared value is dominated by a small portion of the observational constraints used; this value of the reduced chi-squared is similar to that of the recent FGSE best-fit model by Barkana et al. However, the derived value of the Hubble constant is significantly different from the value derived from the FGSE model. We find that the value of the Hubble constant is given by H_0 = 69 +18/-12 (1-K) and 74 +18/-17 (1-K) km/s/Mpc with and without a constraint on the cluster's mass, respectively, where K is the convergence of the cluster at the position of the galaxy and the range for each value is defined by Delta chi-squared = reduced chi-squared. Presently, the best achievable fit for this system is not as good as for PG 1115+080, which also has recently been used to constrain the Hubble constant, and the degeneracy is large. Possibilities for improving the fit and reducing the degeneracy are discussed.Comment: 22 pages in aaspp style including 6 tables and 5 figures, ApJ in press (Nov. 1st issue

    CFHT AO Imaging of the CLASS Gravitational Lens System B1359+154

    Get PDF
    We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5-GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift.Comment: 12 pages including 3 figures; ApJL accepte

    CX3CR1 Polymorphisms are associated with atopy but not asthma in German children

    Get PDF
    Chemokines and their receptors are involved in many aspects of immunity. Chemokine CX3CL1, acting via its receptor CX3CR1, regulates monocyte migration and macrophage differentiation as well as T cell-dependent inflammation. Two common, nonsynonymous polymorphisms in CX3CR1 have previously been shown to alter the function of the CX3CL1/CX3CR1 pathway and were suggested to modify the risk for asthma. Using matrix-assisted laser desorption/ionization time-of-flight technology, we genotyped polymorphisms Val249Ile and Thr280Met in a cross-sectional population of German children from Munich (n = 1,159) and Dresden ( n = 1,940). For 249Ile an odds ratio of 0.77 (95% confidence interval 0.63-0.96; p = 0.017) and for 280Met an odds ratio of 0.71 ( 95% confidence interval 0.56-0.89; p = 0.004) were found with atopy in Dresden but not in Munich. Neither polymorphism was associated with asthma. Thus, amino acid changes in CX3CR1 may influence the development of atopy but not asthma in German children. Potentially, other factors such as environmental effects may modify the role of CX3CR1 polymorphisms. Copyright (c) 2007 S. Karger AG, Basel

    Gravitational Lensing by Power-Law Mass Distributions: A Fast and Exact Series Approach

    Get PDF
    We present an analytical formulation of gravitational lensing using familiar triaxial power-law mass distributions, where the 3-dimensional mass density is given by ρ(X,Y,Z)=ρ0[1+(Xa)2+(Yb)2+(Zc)2]−Μ/2\rho(X,Y,Z) = \rho_0 [1 + (\frac{X}{a})^2 + (\frac{Y}{b})^2 + (\frac{Z}{c})^2]^{-\nu/2}. The deflection angle and magnification factor are obtained analytically as Fourier series. We give the exact expressions for the deflection angle and magnification factor. The formulae for the deflection angle and magnification factor given in this paper will be useful for numerical studies of observed lens systems. An application of our results to the Einstein Cross can be found in Chae, Turnshek, & Khersonsky (1998). Our series approach can be viewed as a user-friendly and efficient method to calculate lensing properties that is better than the more conventional approaches, e.g., numerical integrations, multipole expansions.Comment: 24 pages, 3 Postscript figures, ApJ in press (October 10th

    Analytic Time Delays and H_0 Estimates for Gravitational Lenses

    Get PDF
    We study gravitational lens time delays for a general family of lensing potentials, which includes the popular singular isothermal elliptical potential and singular isothermal elliptical density distribution but allows general angular structure. Using a novel approach, we show that the time delay can be cast in a very simple form, depending only on the observed image positions. Including an external shear changes the time delay proportional to the shear strength, and varying the radial profile of the potential changes the time delay approximately linearly. These analytic results can be used to obtain simple estimates of the time delay and the Hubble constant in observed gravitational lenses. The naive estimates for four of five time delay lenses show surprising agreement with each other and with local measurements of H_0; the complicated Q 0957+561 system is the only outlier. The agreement suggests that it is reasonable to use simple isothermal lens models to infer H_0, although it is still important to check this conclusion by examining detailed models and by measuring more lensing time delays.Comment: 16 pages with 2 embedded figures; submitted to Ap
    • 

    corecore