132 research outputs found

    Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

    Get PDF
    Understanding the local behaviour of structured multi-dimensional data is a fundamental problem in various areas of computer science. As the amount of data is often huge, it is desirable to obtain sublinear time algorithms, and specifically property testers, to understand local properties of the data. We focus on the natural local problem of testing pattern freeness: given a large dd-dimensional array AA and a fixed dd-dimensional pattern PP over a finite alphabet, we say that AA is PP-free if it does not contain a copy of the forbidden pattern PP as a consecutive subarray. The distance of AA to PP-freeness is the fraction of entries of AA that need to be modified to make it PP-free. For any ϵ∈[0,1]\epsilon \in [0,1] and any large enough pattern PP over any alphabet, other than a very small set of exceptional patterns, we design a tolerant tester that distinguishes between the case that the distance is at least ϵ\epsilon and the case that it is at most adϵa_d \epsilon, with query complexity and running time cdϵ−1c_d \epsilon^{-1}, where ad<1a_d < 1 and cdc_d depend only on dd. To analyze the testers we establish several combinatorial results, including the following dd-dimensional modification lemma, which might be of independent interest: for any large enough pattern PP over any alphabet (excluding a small set of exceptional patterns for the binary case), and any array AA containing a copy of PP, one can delete this copy by modifying one of its locations without creating new PP-copies in AA. Our results address an open question of Fischer and Newman, who asked whether there exist efficient testers for properties related to tight substructures in multi-dimensional structured data. They serve as a first step towards a general understanding of local properties of multi-dimensional arrays, as any such property can be characterized by a fixed family of forbidden patterns

    Generative Adversarial Networks via a Composite Annealing of Noise and Diffusion

    Full text link
    Generative adversarial network (GAN) is a framework for generating fake data using a set of real examples. However, GAN is unstable in the training stage. In order to stabilize GANs, the noise injection has been used to enlarge the overlap of the real and fake distributions at the cost of increasing variance. The diffusion (or smoothing) may reduce the intrinsic underlying dimensionality of data but it suppresses the capability of GANs to learn high-frequency information in the training procedure. Based on these observations, we propose a data representation for the GAN training, called noisy scale-space (NSS), that recursively applies the smoothing with a balanced noise to data in order to replace the high-frequency information by random data, leading to a coarse-to-fine training of GANs. We experiment with NSS using DCGAN and StyleGAN2 based on benchmark datasets in which the NSS-based GANs outperforms the state-of-the-arts in most cases

    Time-Space Trade-offs for Triangulating a Simple Polygon

    Get PDF
    An s-workspace algorithm is an algorithm that has read-only access to the values of the input, write-only access to the output, and only uses O(s) additional words of space. We give a randomized s-workspace algorithm for triangulating a simple polygon P of n vertices, for any s up to n. The algorithm runs in O(n^2/s+n(log s)log^5(n/s)) expected time using O(s) variables, for any s up to n. In particular, the algorithm runs in O(n^2/s) expected time for most values of s
    • …
    corecore