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Abstract
An s-workspace algorithm is an algorithm that has read-only access to the values of the input,
write-only access to the output, and only uses O(s) additional words of space. We give a random-
ized s-workspace algorithm for triangulating a simple polygon P of n vertices, for any s ∈ O(n).
The algorithm runs in O(n2/s + n(log s) log5(n/s)) expected time using O(s) variables, for any
s ∈ O(n). In particular, when s ∈ O( n

logn log5 logn ) the algorithm runs in O(n2/s) expected time.
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1 Introduction

Triangulation of a simple polygon, often used as a preprocessing step in computer graphics,
is performed in a wide range of settings including on embedded systems like the Raspberry
Pi or mobile phones. Such systems often run read-only filesystems for security reasons and
have very limited working memory. An ideal triangulation algorithm for such an environment
would allow for a trade-off in performance in time versus working space.

Computer science and specifically the field of Algorithms generally has two optimization
goals; running time and memory size. In the 70’s there was a strong focus on algorithms
that required low memory as it was expensive. As memory became cheaper and more
widely available this focus shifted towards optimizing algorithms for their running time, with
memory mainly as a secondary constraint.
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Nowadays, even though memory is cheap, there are other constraints that limit memory
usage. First, there is a vast number of embedded devices that operate on batteries and have
to remain small, which means they simply cannot contain a large memory. Second, some
data may be read-only, due to hardware constraints (i.e., DVD/CDs can be written only
once), or concurrency issues (i.e., to allow many processes to access the database at once).

These memory constraints can all be described in a simple way by the so-called constrained-
workspace model (see Section 2 for details). Our input is read-only and potentially much
larger than our working space, and the output we produce must we written to write-only
memory. More precisely, we assume we have a read-only dataset of size n and a working
space of size O(s), for some user-specified parameter s. In this model, the aim is to design
an algorithm whose running time decreases as s grows. Such algorithms are called time-space
trade-off algorithms [11].

Previous Work

Several models of computation that consider space constraints have been studied in the
past (we refer the interested reader to [9] for an overview). In the following we discuss the
results related to triangulations. The concept of memory-constrained algorithms attracted
renewed attention within the computational geometry community by the work of Asano et
al. [4]. One of the algorithms presented in [4] was for triangulating a set of n points in the
plane in O(n2) time using O(1) variables. More recently, Korman et al. [10] introduced two
different time-space trade-off algorithms for triangulating a point set: the first one computes
an arbitrary triangulation in O(n2/s+ n(logn) log s) time using O(s) variables. The second
is a randomized algorithm that computes the Delaunay triangulation of the given point set
in expected O((n2/s) log s+ n(log s) log∗ s) time within the same space bounds.

The above results address triangulating discrete point sets in the plane. The first algorithm
for triangulating simple polygons was due to Asano et al. [2] (in fact, the algorithm works
for slightly more general inputs: plane straight-line graphs). It runs in O(n2) time using
O(1) variables. The first time-space trade-off for triangulating polygons was provided by
Barba et al. [5]. In their work, they describe a general time-space trade-off algorithm that
in particular could be used to triangulate monotone polygons. An even faster algorithm
(still for monotone polygons) was afterwards found by Asano and Kirkpatrick [3]: O(n logs n)
time using O(s) variables. Despite extensive research on the problem, there was no known
time-space trade-off algorithm for general simple polygons. It is worth noting that no lower
bounds on the time-space trade-off are known for this problem either.

Results

This paper is structured as follows: In Section 2 we define our model, as well as the problems
we study. Our main result on triangulating a simple polygon P with n vertices using only
a limited amount of memory can be found in Section 3. Our algorithm achieves expected
running time of O(n2/s+n(log s) log5(n/s)) using O(s) variables, for any s ∈ Ω(logn)∩O(n).
Note that for most values of s (i.e., when s ∈ O( n

(logn) log5 logn )) the algorithm runs in O(n2/s)
expected time.

Our approach uses a recent result by Har-Peled [8] as a tool for subdividing P into smaller
pieces and solving them recursively. A similar approach can be used for other problems.
Indeed, in an extended version of this paper [1] we show how a similar approach can be
used to compute the shortest-path map or shortest-path tree from any point p ∈ P , or simply
to split P by Θ(s) pairwise disjoint diagonals into smaller subpolygons, each with Θ(n/s)
vertices.
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2 Preliminaries

In this paper, we utilize the s-workspace model of computation that is frequently used in the
literature (see for example [2, 5, 6, 8]). In this model the input data is given in a read-only
array or some similar structure. In our case, the input is a simple polygon P ; let v1, v2, . . . , vn
be the vertices of P in clockwise order along the boundary of P . We assume that, given an
index i, in constant time we can access the coordinates of the vertex vi. We also assume
that the usual word RAM operations (say, given i, j, k, finding the intersection point of the
line passing through vertices vi and vj and the horizontal line passing through vk) can be
performed in constant time.

In addition to the read-only data, an s-workspace algorithm can use O(s) variables during
its execution, for some parameter s determined by the user. Implicit memory consumption
(such as the stack space needed in recursive algorithms) must be taken into account when
determining the size of a workspace. We assume that each variable or pointer is stored in a
data word of Θ(logn) bits. Thus, equivalently, we can say that an s-workspace algorithm
uses O(s logn) bits of storage.

In this model we study the problem of computing a triangulation of a simple polygon P .
A triangulation of P is a maximal crossing-free straight-line graph whose vertices are the
vertices of P and whose edges lie inside P . Unless s is very large, the triangulation cannot
be stored explicitly. Thus, the goal is to report a triangulation of P in a write-only data
structure. Once an output value is reported it cannot be afterwards accessed or modified.

In other memory-constrained triangulation algorithms [2, 3] the output is reported as
a list of edges in no particular order (with no information on neighboring edges or faces).
Moreover, it is not clear how to modify these algorithms to obtain such information. Our
approach has the advantage that, in addition to the list of edges, we can report adjacency
information as well. For example, we could report the triangulation in a doubly connected
edge list (or any other similar format). More details on how we can report the triangulation
are given in Section 3.4.

A vertex of a polygon is reflex if its interior angle is larger than 180◦. Given two points
p, q ∈ P , the geodesic (or shortest path) between them is the path of minimum length that
connects p and q and that stays within P (viewing P as a closed set). The length of that
path is the geodesic distance from p to q. It is well known that, for any two points of P ,
their geodesic π always exists and is unique. Such a path is a polygonal chain whose vertices
(other than p and q) are reflex vertices of P . Thus, we often identify π with the ordered
sequence of reflex vertices traversed by the path from p to q. When that sequence is empty
(i.e., the geodesic consists of the straight segment pq) we say that p sees q (and vice versa).

Our algorithm relies in a recent result by Har-Peled [8] for computing geodesics under
memory constraints. Specifically, it computes the geodesic between any two points in a
simple polygon of n vertices in expected O(n2/s+n log s log4(n/s)) time using O(s) words of
space. Note that this path might not fit in memory, so the edges of the geodesic are reported
one by one in order.

3 Algorithm

Let π be the geodesic connecting v1 and vbn/2c. From a high-level perspective, the algorithm
uses the approach of Har-Peled [8] to compute π. We will use the computed edges to subdivide
P into smaller problems that can be solved recursively.

We start by introducing some definitions that will help in storing which portion of the
polygon has already been triangulated. Vertices v1 and vbn/2c split the boundary of P into

SWAT 2016
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two chains. We say vi is a top vertex if 1 < i < bn/2c and a bottom vertex if bn/2c < i ≤ n.
Top/bottom is the type of a vertex and all vertices (except for v1 and vbn/2c) have exactly
one type. A diagonal c is alternating if it connects a top and a bottom vertex (or one of its
endpoints is either v1 or vbn/2c), and non-alternating otherwise.

We will use diagonals to partition P into two parts. For simplicity of the exposition,
given a diagonal d, we regard both components of P \ d as closed (i.e., the diagonal belongs
to both of them). Since any two consecutive vertices of P can see each other, the partition
an edge of P is trivial, in the sense that one subpolygon is P and the other one is a line
segment.

I Observation 1. Let c be a diagonal of P not incident to v1 or vbn/2c. Vertices v1 and
vbn/2c belong to different components of P \ c if and only if c is an alternating diagonal.

I Corollary 2. Let c be a non-alternating diagonal of P . The component of P \c that contains
neither v1 nor vbn/2c has at most dn/2e vertices.

While triangulating the polygon, an alternating diagonal ac records the part of the
polygon has already been triangulated. More specically, we maintain the following invariant:
the connected component of P \ ac not containing vbn/2c has already been triangulated.

Ideally, ac would be a segment of π (the geodesic connecting v1 and vbn/2c), but this is
not always possible. Instead, we guarantee that at least one of the endpoints of ac is a vertex
of π that has already been computed in the execution of the shortest-path algorithm.

With these definitions in place, we can give an intuitive description of our algorithm:
we start by setting ac as the degenerate diagonal from v1 to v1. We then use the shortest-
path computation approach of Har-Peled. Our aim is to walk along π until we find a new
alternating diagonal anew. At that moment we pause the execution of the shortest-path
algorithm, triangulate the subpolygons of P that have been created (and contain neither v1
nor vbn/2c) recursively, update ac to the newly found alternating diagonal, and then continue
with the execution of the shortest-path algorithm.

Although our approach is intuitively simple, there are several technical difficulties that
must be carefully considered. Ideally, the number of vertices we walked along π before finding
an alternating diagonal is small and thus they can be stored explicitly. But if we do not find
an alternating diagonal on π in just a few steps (indeed, it could even be that there is no
alternating diagonal in π), we need to use other diagonals. We also need to make sure that
the complexity of each recursive subproblem is reduced by a constant fraction, that we never
exceed space bounds, and that no part of the triangulation is reported more than once.

Let vc denote the endpoint of ac that is on π and that is closest to vbn/2c. Recall that
the subpolygon defined by ac containing v1 has already been triangulated. Let w0, . . . , wk
be the portion of π up to the next alternating diagonal. That is, path π is of the form
π = (v1, . . . , vc = w0, w1, . . . , wk, . . . , vbn/2c) where w1, . . . , wk−1 are of the same type as vc,
and wk is of different type (or wk = vbn/2c if all vertices between vc and vbn/2c are of the
same type).

Consider the partition of P induced by ac and this portion of π, see Figure 1. Let P1
be the subpolygon induced by ac that does not contain vbn/2c. Similarly, let Pbn/2c be the
subpolygon that is induced by the alternating diagonal wk−1wk and does not contain v1

1.

1 For simplicity of the exposition, the definition of P1 assumes that vbn/2c is not an endpoint of ac
(similarly, v1 not an endpoint of wk−1wk for the definition of Pbn/2c). Each of these conditions is not
satisfied once (i.e., with the first and last diagonals of π), and in those cases the polygons P1 and Pbn/2c
are not properly defined. Whenever this happens we have k = 1 and a single diagonal that splits P in
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v1

vbn/2c

ac

P1

Pbn/2c

Q2

R

Q0

w1 w2

Q1

vc = w0
w3

w4

Figure 1 Partitioning P into subpolygons P1, Pbn/2c, R, Q1, . . ., Qk−2. The two alternating
diagonals are marked by thick red lines.

For any i < k − 1 we define Qi as the subpolygon induced by the non-alternating diagonal
wiwi+1 that contains neither v1 nor vbn/2c. Finally, let R be the remaining component of P .
Note that some of these subpolygons may be degenerate and consist only of a line segment
(for example, when wiwi+1 is an edge of P ).

I Lemma 3. Each of the subpolygons R, Q1, Q2, . . ., Qk−2 has at most dn/2e+ k vertices.
Moreover, if wk = vbn/2c, then the subpolygon Pbn/2c also has at most dn/2e vertices.

Proof. Subpolygons Qi are induced by non-alternating diagonals and cannot have more than
dn/2e vertices, by Corollary 2. The proof for R follows by definition: the boundary of R
(other than vertices w0, . . . , wk) is defined by a contiguous portion of P consisting of only
top vertices or only bottom vertices. Recall that there are at most dn/2e of them. Similarly,
if wk = vbn/2c, subpolygon Pbn/2c can only have vertices of one type (either only top or only
bottom vertices), and thus the bound holds. This completes the proof of the Lemma. J

This result allows us to treat the easy case of our algorithm. When k is small (say,
a constant number of vertices), we can pause the shortest-path computation algorithm,
explicitly store all vertices wi, recursively triangulate R as well as the subpolygons Qi (for
all i ≤ k − 2), update ac to the edge wk−1wk and continue with the shortest-path algorithm.

Handling the case of large k is more involved. Note that we do not know the value of k
until we find the next alternating diagonal, but we need not compute it directly. Given a
parameter τ related to the workspace allowed for our algorithms, we say that the path is
long when k > τ . Initially we set τ = s but the value of this parameter will change as we
descend the recursion tree. We say that the distance between two alternating diagonals is
long whenever we have computed τ vertices of π besides vc and they are all of the same type
as vc. That is, path π is of the form π = (v1, . . . , vc = w0, w1, . . . , wτ , . . . vbn/2c) and vertices
w0, w1, . . . wτ are all of the same type. In particular, the vertices w0, . . . , wτ must form a
convex chain (see Figure 1). Rather than continue walking along π, we look for a vertex u of
P that together with wτ forms an alternating diagonal. Once we have found this diagonal,
we have at most τ + 2 diagonals (ac, w0w1, w1w2, . . . , wτ−1wτ , and uwτ ) partitioning P into
at most τ + 3 subpolygons once again: P1 is the part induced by ac which does not contain
vbn/2c, Pbn/2c is the part induced by uwτ which does not contain v1, Qi is the part induced
by wiwi+1, which contains neither v1 nor vbn/2c, and R is the remaining component.

two. Thus, if vbn/2c ∈ ac (and thus P1 is undefined), we simply define P1 as the complement Pbn/2c
(similarly, if v1 ∈ wk−1wk, we define Pbn/2c as complement of P1. If both subpolygons are undefined
simultaneously we assign them arbitrarily.

SWAT 2016
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vc = w0

w1

w2

wτwτ−1

u′

vbn/2c

v1

pN
e

Figure 2 After we have walked τ steps of π we can find an alternating diagonal by shooting a ray
from wτ either towards u′ or wτ−1 (whichever is higher). The upper endpoint pN of the first edge e
hit might not be visible. But in this case the reflex vertex of smallest angle inside the triangular
zone must be visible.

I Lemma 4. We can find a vertex u that together with wτ forms an alternating diagonal in
O(n) time using O(1) space. Moreover, each of the subpolygons R, Q1, Q2, . . ., Qτ−2 has at
most dn/2e+ τ vertices.

Proof. Proofs for the size of the subpolygons are identical to those of Lemma 3. Thus, we
focus on how to compute u efficiently. Without loss of generality, we may assume that the
edge wτ−1wτ is horizontal. Recall that the chain w0, . . . , wτ is in convex position, thus all of
these vertices must lie on one side of the line `τ,τ−1 through wτ and wτ−1. Without loss of
generality, we may assume that they all lie below `τ,τ−1. Let u′ be the endpoint of ac other
than vc. If u′ also lies below `τ,τ−1, we shoot a ray from wτ towards wτ−1. Otherwise, we
shoot a ray from wτ towards u′. Let e be the first edge that is properly intersected by the
ray and let pN be the endpoint of e of highest y-coordinate. Observe that pN must be on or
above `τ,τ−1, see Figure 2.

Ideally, we would like to report pN as the vertex u. However, point pN need not be
visible even when some portion of e is. Whenever this happens we can use the visibility
properties of simple polygons: since e is partially visible, we know that the portion of P that
obstructs visibility between wτ and pN must cross the segment from wτ to pN . In particular,
there must be one or more reflex vertices in the triangle formed by wτ , pN , and the visible
point of e (shaded region of Figure 2). Among those vertices, we know that the vertex r
that maximizes the angle ∠pNwτr must be visible (see Lemma 1 of [6]). Further note that r
must be a top vertex: otherwise π would need to traverse through r to reach vbn/2c, and this
would force π to do a reflex turn, which is impossible in a geodesic.

As described in Lemma 1 of [6], in order to find such a reflex vertex we need to scan the
input polygon at most three times, each time storing a constant amount of information: once
for finding the edge e and point pN , once more to determine if pN is visible, and a third time
to find r if pN is not visible. J

At high level, our algorithm walks from v1 to vbn/2c. We stop after walking τ steps
or when we find an alternating diagonal (whichever comes first). This generates several
subproblems of smaller complexity that are solved recursively. Once the recursion is done
we update ac (to keep track of the portion of P that has been triangulated), and continue
walking along π. The walking process ends when it reaches vbn/2c. In this case, in addition
to triangulating R and the Qi subpolygons as usual, we must also triangulate Pbn/2c.
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The algorithm in the deeper levels of recursion is almost identical. There are only three
minor changes that need to be introduced. We need some base cases to end the recursion.
Recall that τ denotes the amount of space available to the current level of recursion. Thus,
if τ is comparable to n (say, 10τ ≥ n), then the whole polygon fits into memory and can be
triangulated in linear time [7]. Similarly, if τ is small (say τ ≤ 1, we have run out of space
and thus we triangulate P using a constant workspace algorithm [2]. In all other cases we
continue with the recursive algorithm as usual.

For ease in handling the subproblems, at each step we also indicate the vertex that fulfils
the role of v1 (i.e., one of the vertices from which the geodesic must be computed). Recall
that we have random access to the vertices of the input. Thus, once we know which vertex
plays the role of v1, we can find the vertex that satisfies the role of vbn/2c in constant time
as well.

In order to avoid exceeding the space bounds, at each level of the recursion we decrease the
value of τ by a factor of κ < 1. The exact value of κ will be determined below. Pseudocode
of the recursive algorithm can be found in the Appendix (Algorithm 1).

I Theorem 5. Let P be a simple polygon of n vertices. We can compute a triangulation of
P in O(n2/s+ n(log s) log5(n/s)) expected time using O(s) variables (for any s ∈ O(n)). In
particular, when s ∈ O( n

logn log5 logn ) the algorithm runs in O(n2/s) expected time.

In the remainder of the section we prove correctness and both the time and space bounds
for our algorithm.

3.1 Correctness
The current diagonal ac properly records what portion of the polygon has already been
triangulated. Thus, we never report an edge of the triangulation more than once. Hence,
in order to show correctness of the algorithm, we must show that the recursion eventually
terminates.

During the execution of the algorithm, we invoke recursion for polygons Qi, R, and Pbn/2c
(the latter one only when we have reached vbn/2c). By Lemma 3 all of these polygons have
size at most n/2 + τ . Since we only enter this level of recursion whenever τ ≤ n/10 (see
lines 1-3 of Algorithm 1), overall the size of the problem decreases by a factor of 6/10. That
is, at each level of recursion the problem instances are reduced by a constant fraction. In
particular, after O(logn) steps the subpolygons will be of constant size and will be solved
without recursion.

At each level of recursion we use the shortest-path algorithm of Har-Peled. This algorithm
needs random access in constant time to the vertices of the polygon. Thus, we must make
sure that this property is preserved at all levels of recursion. A simple way to do so would
be to explicitly store the polygon in memory at every recursive call, but this may exceed the
space bounds of the algorithm.

Instead, we make sure that the subpolygon is described by O(τ) words. By construction,
each subpolygon consists of a single chain of contiguous input vertices of P and at most τ
additional cut vertices (vertices from the geodesics at higher levels). We can represent the
portion of P by the indices of the first and last vertex of the chain and explicitly store the
indices of all cut vertices. By an appropriate renaming of the indices within the subpolygon,
we can make the vertices of the chain appear first, followed by the cut vertices. Thus, when
we need to access the ith vertex of the subpolygon, we can check if i corresponds to a vertex
of the chain or one of the cut vertices and identify the desired vertex in constant time, in
either case.

SWAT 2016
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v1 vbn/2c

Figure 3 At different level of recursion the subproblems are formed by a consecutive chain of the
input and a list of O(s) cut vertices. The geodesics used to split the problem at first, second and
third level are depicted in solid red, dashed green, and dotted blue, respectively.

Now, we must show that each recursive call satisfies this property. Clearly this holds
for the top level of recursion, where the input polygon is simply P and no cut vertices are
needed. At the next level of recursion each subproblem has up to τ cut vertices and a chain
of contiguous input vertices. The way we make sure that this property is satisfied at lower
levels of recursion is by a correct choice of v1 (the vertex from which we start the path): at
each level of recursion we build the next geodesic starting from either the first or last cut
vertex. This might create additional cut vertices, but their position is immediately after
or before the already existing cut vertices (see Figure 3). This way we certify that random
access to the input polygon is possible at all levels of recursion.

3.2 Time Bounds
We use a two-parameter function T (η, τ) to bound the expected running time of the algorithm
at all levels of recursion. The first parameter η represents the size of the problem. Specifically,
for a polygon of n vertices we set η = n− 2, namely, the number of triangles to be reported.
The second parameter τ gives the space bound for the algorithm. Initially, we have τ = s,
but this value decreases by a factor of κ at each level of recursion. Recall that τ is also the
workspace limit for the shortest-path algorithm of Har-Peled that we invoke as part of our
algorithm. In addition, τ is also used as the limit on the length of the geodesic we explore
looking for an alternating diagonal.

When τ becomes really small (say τ ≤ 10) we have run out of allotted space. Thus,
we triangulate the polygon using the constant workspace method of Asano et al. [2] that
runs in O(n2) time. Similarly, if the space is large when compared to the instance size (say,
10τ ≥ η) the polygon fits in the allowed workspace, hence we use Chazelle’s algorithm [7] for
triangulating it. In both cases we have T (η, τ) ≤ c∆η2/τ (for some constant c∆ > 0).

In other situations, we must partition the problem and solve it recursively. First we
bound the time needed to compute the partitions. The main tool we use is computing the
geodesic between v1 and vbn/2c. This is done by the algorithm of Har-Peled [8] which takes
O(η2/τ + η(log τ) log4(η/τ)) expected time and uses O(τ) space. Recall that we pause and
continue it often during the execution of our algorithm, but overall we only execute it once.
Thus, the total time spent in shortest-path computation at one level is unchanged.

Another operation that we execute is FindAlternatingDiagonal (i.e., Lemma 4)
which takes O(η) time and O(1) space. In the worst case, this operation is invoked once
for every τ vertices of π. Since π cannot have more than n vertices, the overall time spent
in this operation is bounded by O(η2/τ). Thus, ignoring the time spent in recursion, the
expected running time of the algorithm is cHP(η2/τ + η(log τ) log4(η/τ)) for some constant
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cHP, which without loss of generality we assume to be at least c∆.
That is, for any value of η and τ we never spend more than cHP(η2/τ +η(log τ) log4(η/τ))

time. To this value we must add the time spent in recursion. At each level we launch several
subproblems, giving a recurrence of the form

T (η, τ) ≤ cHP(η2/τ + η(log τ) log4(η/τ)) +
∑
j

T (ηj , κτ).

Recall that the values ηj cannot be very large when compared to η. Indeed, each subproblem
can have at most a constant fraction c of vertices of the original one (i.e., the way in
which lines 1–4 of Algorithm 1 have been set, we have c = 6/10). Thus, each ηj satisfies
ηj ≤ c(η + 2)− 2 ≤ cη. Since every edge is reported exactly once, we also have

∑
j ηj = η.

We claim that for any τ, η > 0 there exists a constant cR so that T (η, τ) ≤ cR(η2/τ +
η(log τ) log5(η/τ)). Indeed, when τ ≤ 10 or 10τ ≥ η we have T (η, τ) ≤ c∆η

2 ≤ cHPη
2.

Otherwise, we use induction and obtain

T (η, τ) ≤ cHP(η2/τ + η(log τ) log4(η/τ)) +
∑
j

T (ηj , τκ)

≤ cHP(η2/τ + η(log τ) log4(η/τ)) + cR
τκ

∑
j

η2
j + cR

∑
j

ηj(log κτ) log5( ηj
τκ

)

≤ (cHP
η2

τ
+ cR
τκ

∑
j

η2
j ) + cHPη(log τ) log4(η/τ) + cR

∑
j

ηj(log τ) log5( ηj
τκ

)

≤ (cHP
η2

τ
+ cR
τκ

∑
j

η2
j ) + cHPη(log τ) log4(η/τ) + cR

∑
j

ηj(log τ) log5( cη
τκ

)

≤ (cHP
η2

τ
+ cR
τκ

∑
j

η2
j ) + cHPη(log τ) log4(η/τ) + cRη(log τ) log5( cη

τκ
).

The sum
∑
j η

2
j is at most n

cn (cη)2 = cη2, since ηj ≤ cη, yielding

T (η, τ) ≤ (cHP
η2

τ
+ cRc

κ

η2

τ
) + cHPη(log τ) log4(η/τ) + cRη(log τ) log5( cη

τκ
)

≤ cRη
2

τ
+ cHPη(log τ) log4(η/τ) + cRη(log τ) log5( cη

τκ
),

where the inequality cHP + c
κcR ≤ cR holds for sufficiently large values of cR and κ < 1 (say,

cR = 10cHP and κ = 9/10). Now we focus on the second term of the inequation. We upper
bound log5( cητκ ) by log4( ητ ) log( cητκ ) = log4( ητ )(log( ητ )− log(κc )) and substitute to obtain:

T (η, τ) ≤ cRη
2

τ
+ cHPη(log τ) log4(η/τ) + cRη(log τ) log4(η

τ
)(log(η

τ
)− log(κ

c
))

≤ cRη
2

τ
+ (η(log τ) log4(η

τ
))(cHP + cR log(η

τ
)− cR log(κ

c
))

≤ cRη
2

τ
+ cR(η(log τ) log5(η

τ
)) = cR(η2/τ + η(log τ) log5(η

τ
)).

Again, the cHP−cR log(κc ) ≤ 0 inequality holds for sufficiently large values of cR, that depend
on cHP, κ and c.

3.3 Space Bounds
We now show that the space bound holds. Recall that we stop recursion whenever the
problem instance fits into memory or τ ≤ 1. Since the value of τ decreases by a constant
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factor at each level of recursion, we will never recurse for more than logκ s = O(log s) levels.
Thus, the implicit memory consumption used in recursion does not exceed the space bounds.

Now we bound the size of the workspace needed by the algorithm at level i of the recursion
(with the main algorithm invocation being level 0) by O(s · κi). Indeed, this is the threshold
of space we receive as input (recall that initially we set τ = s and that at each level we reduce
this value by a factor of κ). This threshold value is the amount of space for the shortest-path
computation algorithm invoked at the current level, as well as limit on the number of vertices
of π that are stored explicitly before invoking procedure FindAlternatingDiagional.
Once we have found the new alternating diagonal, the vertices of π that were stored explicitly
are used to generate the subproblems for the recursive calls.

The space used for storing the intermediate points can be reused after the recursive
executions are finished, so overall we conclude that at the i-th level of recursion the algorithm
never uses more than O(s · κi) space. Since we never have two simultaneously executing
recursive calls at the same level, and κ < 1, the total amount of space used in the execution
of the algorithm is bounded by

O(s) +O(s · κ) +O(s · κ2) + . . . = O(s).

3.4 Considerations on the Output
For simplicity in the explanation we assumed that in order to report the triangulation,
reporting the edges suffices. However, we note that we can also report the triangulation
in any other format, such as a list of adjacencies. That is, we can report the triangles
generated, and for each one we additionally report the three boundary edges and the three
triangles adjacent to it). Most of this is easy to do, since the triangles are reported at the
bottom level of the recursion where the subpolygons fit in memory. Thus, for each triangle
we can report their adjacencies as usual (using for example the indices of the vertices to
identify the triangles). The only difficulty arises around the edges used to split the polygon
into subpolygons. When we create the triangle on one side of such an edge we do not yet
know which triangle will be created on the other side as this triangle resides in a different
subpolygon. Hence, this triangle cannot report its adjacencies yet.

Instead we delay reporting triangles along these splitting edges until both triangles
have been constructed. For this purpose we must slightly alter the triangulation invariant
associated to ac: subpolygon P1 has been triangulated and all triangles have been reported
except the triangle whose boundary is ac. This triangle (along with its two neighbors in P1)
is stored explicitly in memory.

The algorithm proceeds, partitioning into subproblems Q1, . . . Qk−2 and R as usual.
Each subproblem Qi returns a triangle that has not been reported yet along with its two
adjacencies (or nothing if the corresponding subpolygon Qi is empty). The neighbors of
these triangles are in the subproblem R, so they are given to the recursive procedure of R.
As soon as the missing neighbor is computed, we can report the stored triangle delete it from
memory. Once R has finished we need to update ac and vc as usual. In addition, we must
now store (and do not yet report) the triangle that is adjacent to ac. The bottommost level
of recursion triangulates as usual and stores the single triangle that has not been reported so
it can be reported when processing R.

Overall, at each level of recursion we need to store as many triangles as subproblems
generated. Moreover, once R has been recursively triangulated, this information need not
be stored anymore. Recall that the number of subproblems generated is at most the space
threshold. Thus, we conclude that the storage bounds are asymptotically unaffected.
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A Algorithm Pseudocode

Algorithm 1: Pseudocode for Triangulate(P, v1, τ) that, given a simple polygon P , a
vertex v of P , and workspace capacity τ , computes a triangulation of P in O(n2/τ)
time using O(τ) variables.

1: if 10τ ≥ n then (* The polygon fits into memory. *)
2: Triangulate P using Chazelle’s algorithm [7]
3: else if τ ≤ 10 then (* We ran out of recursion space. *)
4: Triangulate P using the constant workspace algorithm [2]
5: else (* P is large, we will use recursion. *)
6: ac ← v1v1
7: vc ← v1
8: walked ← v1 (* Variable to keep track of how far we have walked on π. *)
9: while walked 6= vbn/2c do

10: i← 0 (* i counts the number of steps before finding an alternation edge *)
11: repeat
12: i← i+ 1
13: wi ← next vertex of π
14: until i = τ or type(vc) 6= type(wi)
15: if type(vc) 6= type(wi) then
16: u′ ← wi−1
17: anew ← wiwi−1
18: else (* We walked too much. Use Lemma 4 to partition the problem. *)
19: u′ ← FindAlternatingDiagional(P, ac, vc, w1, . . . , wτ )
20: anew ← u′wi
21: end if
22: (* Now we triangulate the subpolygons. *)
23: Triangulate(R, u′, τ · κ)
24: for j=0 to i-2 do
25: Triangulate(Qj , wj , τ · κ)
26: end for
27: ac ← anew
28: vc ← wτ
29: walked ← wτ
30: end while
31: (* We reached vbn/2c. All parts except Pbn/2c have been triangulated. *)
32: Triangulate(Pbn/2c, wi, τ · κ)
33: end if
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