38 research outputs found

    TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation

    Get PDF
    <div><p>Recent work indicates that the nuclear envelope is a major signaling node for the cell that can influence tissue differentiation processes. Here we present two nuclear envelope trans-membrane proteins TMEM120A and TMEM120B that are paralogs encoded by the <i>Tmem120A</i> and <i>Tmem120B</i> genes. The TMEM120 proteins are expressed preferentially in fat and both are induced during 3T3-L1 adipocyte differentiation. Knockdown of one or the other protein altered expression of several genes required for adipocyte differentiation, <i>Gata3</i>, <i>Fasn</i>, <i>Glut4</i>, while knockdown of both together additionally affected <i>Pparg</i> and <i>Adipoq</i>. The double knockdown also increased the strength of effects, reducing for example <i>Glut4</i> levels by 95% compared to control 3T3-L1 cells upon pharmacologically induced differentiation. Accordingly, TMEM120A and B knockdown individually and together impacted on adipocyte differentiation/metabolism as measured by lipid accumulation through binding of Oil Red O and coherent anti-Stokes Raman scattering microscopy (CARS). The nuclear envelope is linked to several lipodystrophies through mutations in lamin A; however, lamin A is widely expressed. Thus it is possible that the TMEM120A and B fat-specific nuclear envelope transmembrane proteins may play a contributory role in the tissue-specific pathology of this disorder or in the wider problem of obesity.</p></div

    Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation

    Full text link

    Molecular insights into the premature aging disease progeria

    Get PDF

    Evaluation of heavy metals content in dietary supplements in Lebanon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The consumption of dietary supplements is widely spread and on the rise. These dietary supplements are generally used without prescriptions, proper counseling or any awareness of their health risk. The current study aimed at analyzing the metals in 33 samples of imported dietary supplements highly consumed by the Lebanese population, using 3 different techniques, to ensure the safety and increase the awareness of the citizen to benefit from these dietary supplements.</p> <p>Results</p> <p>Some samples had levels of metals above their maximum allowable levels (Fe: 24%, Zn: 33%, Mn: 27%, Se: 15%, Mo: 12% of samples), but did not pose any health risk because they were below permitted daily exposure limit and recommended daily allowance except for Fe in 6% of the samples. On the other hand, 34% of the samples had Cu levels above allowable limit where 18% of them were above their permitted daily exposure and recommended daily allowance. In contrast, all samples had concentration of Cr, Hg, and Pb below allowable limits and daily exposure. Whereas, 30% of analyzed samples had levels of Cd above allowable levels, and were statistically correlated with Ca, and Zn essential minerals. Similarly 62% of the samples had levels of As above allowable limits and As levels were associated with Fe and Mn essential minerals.</p> <p>Conclusion</p> <p>Dietary supplements consumed as essential nutrients for their Ca, Zn, Fe and Mn content should be monitored for toxic metal levels due to their natural geochemical association with these essential metals to provide citizens the safe allowable amounts.</p
    corecore