12 research outputs found

    Domain Generalization by Learning from Privileged Medical Imaging Information

    Full text link
    Learning the ability to generalize knowledge between similar contexts is particularly important in medical imaging as data distributions can shift substantially from one hospital to another, or even from one machine to another. To strengthen generalization, most state-of-the-art techniques inject knowledge of the data distribution shifts by enforcing constraints on learned features or regularizing parameters. We offer an alternative approach: Learning from Privileged Medical Imaging Information (LPMII). We show that using some privileged information such as tumor shape or location leads to stronger domain generalization ability than current state-of-the-art techniques. This paper demonstrates that by using privileged information to predict the severity of intra-layer retinal fluid in optical coherence tomography scans, the classification accuracy of a deep learning model operating on out-of-distribution data improves from 0.9110.911 to 0.9340.934. This paper provides a strong starting point for using privileged information in other medical problems requiring generalization

    Acute Haemodynamic Changes During Haemodialysis Do Not Exacerbate Gut Hyperpermeability

    Get PDF
    © 2019 The Author(s)Introduction: The gastrointestinal tract is a potential source of inflammation in dialysis patients. In-vitro studies suggest breakdown of the gut barrier in uraemia leading to increased intestinal permeability and it is hypothesised that haemodialysis exacerbates this problem due to mesenteric ischemia induced by blood volume changes during treatment. Method: The effect of haemodialysis on intestinal permeability was studied in ten haemodialysis patients and compared with five controls. Intestinal permeability was assessed by measuring the differential absorption of four orally administered sugar probes which provides an index of small and whole bowel permeability. A multi-sugar solution (containing lactulose, rhamnose, sucralose and erythritol) was orally administered after an overnight fast. Plasma levels of all sugar probes were measured hourly for 10hrs post-administration. In haemodialysis patients, the procedure was carried out twice – once on a non-dialysis day and once immediately after haemodialysis. Results: Area under curve (AUC) for lactulose: rhamnose (L:R) ratio and sucralose: erythritol (S:E) ratio was similar post-dialysis and on non-dialysis days. AUC for L:R was higher in haemodialysis patients compared to controls (0.071 vs. 0.034,p=0.001), AUC for S:E ratio was not significantly different. Levels of lactulose, sucralose and erythritol were elevated and retained for longer in haemodialysis patients compared to controls due to dependence of sugars on kidney function for clearance. Conclusion: We found no significant acute changes in intestinal permeability in relation to the haemodialysis procedure. Valid comparison of intestinal permeability between controls and haemodialysis patients was not possible due to the strong influence of kidney function on sugar levels.Peer reviewedFinal Published versio

    Practical robustness evaluation in radiotherapy - A photon and proton-proof alternative to PTV-based plan evaluation

    Get PDF
    Background and purpose: A planning target volume (PTV) in photon treatments aims to ensure that the clinical target volume (CTV) receives adequate dose despite treatment uncertainties. The underlying static dose cloud approximation (the assumption that the dose distribution is invariant to errors) is problematic in intensity modulated proton treatments where range errors should be taken into account as well. The purpose of this work is to introduce a robustness evaluation method that is applicable to photon and proton treatments and is consistent with (historic) PTV-based treatment plan evaluations. Materials and methods: The limitation of the static dose cloud approximation was solved in a multi-scenario simulation by explicitly calculating doses for various treatment scenarios that describe possible errors in the treatment course. Setup errors were the same as the CTV-PTV margin and the underlying theory of 3D probability density distributions was extended to 4D to include range errors, maintaining a 90% confidence level. Scenario dose distributions were reduced to voxel-wise minimum and maximum dose distributions; the first to evaluate CTV coverage and the second for hot spots. Acceptance criteria for CTV D98 and D2 were calibrated against PTV-based criteria from historic photon treatment plans. Results: CTV D98 in worst case scenario dose and voxel-wise minimum dose showed a very strong correlation with scenario average D98 (R-2 > 0.99). The voxel-wise minimum dose visualised CTV dose conformity and coverage in 3D in agreement with PTV-based evaluation in photon therapy. Criteria for CTV D98 and D2 of the voxel-wise minimum and maximum dose showed very strong correlations to PTV D98 and D2 (R-2 > 0.99) and on average needed corrections of -0.9% and +2.3%, respectively. Conclusions: A practical approach to robustness evaluation was provided and clinically implemented for PTV-less photon and proton treatment planning, consistent with PTV evaluations but without its static dose cloud approximation. (C) 2019 The Authors. Published by Elsevier B.V

    PTV-based VMAT vs. robust IMPT for head-and-neck cancer:A probabilistic uncertainty analysis of clinical plan evaluation with the Dutch model-based selection

    Get PDF
    Background and purpose: In the Netherlands, head-and-neck cancer (HNC) patients are referred for proton therapy (PT) through model-based selection (MBS). However, treatment errors may compromise adequate CTV dose. Our aims are: (i) to derive probabilistic plan evaluation metrics on the CTV consistent with clinical metrics; (ii) to evaluate plan consistency between photon (VMAT) and proton (IMPT) planning in terms of CTV dose iso-effectiveness and (iii) to assess the robustness of the OAR doses and of the risk toxicities involved in the MBS.Materials and methods: Sixty HNC plans (30 IMPT/30 VMAT) were included. A robustness evaluation with 100,000 treatment scenarios per plan was performed using Polynomial Chaos Expansion (PCE). PCE was applied to determine scenario distributions of clinically relevant dosimetric parameters, which were compared between the 2 modalities. Finally, PCE-based probabilistic dose parameters were derived and compared to clinical PTV-based photon and voxel-wise proton evaluation metrics.Results: Probabilistic dose to near-minimum volume v = 99.8% for the CTV correlated best with clinical PTV-D98% and VWmin-D98%,CTV doses for VMAT and IMPT respectively. IMPT showed slightly higher nominal CTV doses, with an average increase of 0.8 GyRBE in the median of the D99.8%,CTV distribution. Most patients qualified for IMPT through the dysphagia grade II model, for which an average NTCP gain of 10.5 percentages points (%-point) was found. For all complications, uncertainties resulted in moderate NTCP spreads lower than 3 p.p. on average for both modalities.Conclusion: Despite the differences between photon and proton planning, the comparison between PTV-based VMAT and robust IMPT is consistent. Treatment errors had a moderate impact on NTCPs, showing that the nominal plans are a good estimator to qualify patients for PT.</p

    PTV-based VMAT vs. robust IMPT for head-and-neck cancer: A probabilistic uncertainty analysis of clinical plan evaluation with the Dutch model-based selection

    Get PDF
    Background and purpose: In the Netherlands, head-and-neck cancer (HNC) patients are referred for proton therapy (PT) through model-based selection (MBS). However, treatment errors may compromise adequate CTV dose. Our aims are: (i) to derive probabilistic plan evaluation metrics on the CTV consistent with clinical metrics; (ii) to evaluate plan consistency between photon (VMAT) and proton (IMPT) planning in terms of CTV dose iso-effectiveness and (iii) to assess the robustness of the OAR doses and of the risk toxicities involved in the MBS. Materials and methods: Sixty HNC plans (30 IMPT/30 VMAT) were included. A robustness evaluation with 100,000 treatment scenarios per plan was performed using Polynomial Chaos Expansion (PCE). PCE was applied to determine scenario distributions of clinically relevant dosimetric parameters, which were compared between the 2 modalities. Finally, PCE-based probabilistic dose parameters were derived and compared to clinical PTV-based photon and voxel-wise proton evaluation metrics. Results: Probabilistic dose to near-minimum volume v = 99.8% for the CTV correlated best with clinical PTV-D98% and VWmin-D98%,CTV doses for VMAT and IMPT respectively. IMPT showed slightly higher nominal CTV doses, with an average increase of 0.8 GyRBE in the median of the D99.8%,CTV distribution. Most patients qualified for IMPT through the dysphagia grade II model, for which an average NTCP gain of 10.5 percentages points (%-point) was found. For all complications, uncertainties resulted in moderate NTCP spreads lower than 3 p.p. on average for both modalities. Conclusion: Despite the differences between photon and proton planning, the comparison between PTV-based VMAT and robust IMPT is consistent. Treatment errors had a moderate impact on NTCPs, showing that the nominal plans are a good estimator to qualify patients for PT

    Chest CT in the Emergency Department for Diagnosis of COVID-19 Pneumonia: Dutch Experience

    No full text
    Background: Clinicians need to rapidly and reliably diagnose coronavirus disease 2019 (COVID-19) for proper risk stratification, isolation strategies, and treatment decisions. Purpose: To assess the real-life performance of radiologist emergency department chest CT interpretation for diagnosing COVID-19 during the acute phase of the pandemic, using the COVID-19 Reporting and Data System (CO-RADS). Materials and Methods: This retrospective multicenter study included consecutive patients who presented to emergency departments in six medical centers between March and April 2020 with moderate to severe upper respiratory symptoms suspicious for COVID-19. As part of clinical practice, chest CT scans were obtained for primary work-up and scored using the five-point CO-RADS scheme for suspicion of COVID-19. CT was compared with severe acute respiratory syndrome coronavirus 2 reverse-transcription polymerase chain reaction (RT-PCR) assay and a clinical reference standard established by a multidisciplinary group of clinicians based on RT-PCR, COVID-19 contact history, oxygen therapy, timing of RT-PCR testing, and likely alternative diagnosis. Performance of CT was estimated using area under the receiver operating characteristic curve (AUC) analysis and diagnostic odds ratios against both reference standards. Subgroup analysis was performed on the basis of symptom duration grouped presentations of less than 48 hours, 48 hours through 7 days, and more than 7 days. Results: A total of 1070 patients (median age, 66 years; interquartile range, 54-75 years; 626 men) were included, of whom 536 (50%) had a positive RT-PCR result and 137 (13%) of whom were considered to have a possible or probable COVID-19 diagnosis based on the clinical reference standard. Chest CT yielded an AUC of 0.87 (95% CI: 0.84, 0.89) compared with RT-PCR and 0.87 (95% CI: 0.85, 0.89) compared with the clinical reference standard. A CO-RADS score of 4 or greater yielded an odds ratio of 25.9 (95% CI: 18.7, 35.9) for a COVID-19 diagnosis with RT-PCR and an odds ratio of 30.6 (95% CI: 21.1, 44.4) with the clinical reference standard. For symptom duration of less than 48 hours, the AUC fell to 0.71 (95% CI: 0.62, 0.80; P <.001). Conclusion: Chest CT analysis using the coronavirus disease 2019 (COVID-19) Reporting and Data System enables rapid and reliable diagnosis of COVID-19, particularly when symptom duration is greater than 48 hours
    corecore