3,648 research outputs found

    Experimental search for anisotropic flux flow resistivity in the a-b plane of optimally doped epitaxial thin films of YBCO

    Full text link
    Transport measurements along the node and anti-node directions in the a-b plane of optimally doped and epitaxial thin films of YBCO are reported. Low bias magnetoresistance measurements near and below T_c show that the flux flow resistivity along the node and anti-node directions versus magnetic field are indistinguishable. This result suggests that within the experimental error of our measurements, no correspondence is found between the flux pinning properties in YBCO and the d-wave nature of the order parameter.Comment: 5 figure

    Conformative Filtering for Implicit Feedback Data

    Full text link
    Implicit feedback is the simplest form of user feedback that can be used for item recommendation. It is easy to collect and is domain independent. However, there is a lack of negative examples. Previous work tackles this problem by assuming that users are not interested or not as much interested in the unconsumed items. Those assumptions are often severely violated since non-consumption can be due to factors like unawareness or lack of resources. Therefore, non-consumption by a user does not always mean disinterest or irrelevance. In this paper, we propose a novel method called Conformative Filtering (CoF) to address the issue. The motivating observation is that if there is a large group of users who share the same taste and none of them have consumed an item before, then it is likely that the item is not of interest to the group. We perform multidimensional clustering on implicit feedback data using hierarchical latent tree analysis (HLTA) to identify user `tastes' groups and make recommendations for a user based on her memberships in the groups and on the past behavior of the groups. Experiments on two real-world datasets from different domains show that CoF has superior performance compared to several common baselines

    Isolation of high quality graphene from Ru by solution phase intercalation

    Get PDF
    2013 AIP Publishing LL

    Post- and peritraumatic stress in disaster survivors: An explorative study about the influence of individual and event characteristics across different types of disasters

    Get PDF
    Background: Examination of existing research on posttraumatic adjustment after disasters suggests that survivors’ posttraumatic stress levels might be better understood by investigating the influence of the characteristics of the event experienced on how people thought and felt, during the event as well as afterwards. Objective: To compare survivors’ perceived post- and peritraumatic emotional and cognitive reactions across different types of disasters. Additionally, to investigate individual and event characteristics. Design: In a European multi-centre study, 102 survivors of different disasters terror attack, flood, fire and collapse of a building were interviewed about their responses during the event. Survivors’ perceived posttraumatic stress levels were assessed with the Impact of Event Scale-Revised (IES-R). Peritraumatic emotional stress and risk perception were rated retrospectively. Influences of individual characteristics, such as socio-demographic data, and event characteristics, such as time and exposure factors, on post- and peritraumatic outcomes were analyzed. Results: Levels of reported post- and peritraumatic outcomes differed significantly between types of disasters. Type of disaster was a significant predictor of all three outcome variables but the factors gender, education, time since event, injuries and fatalities were only significant for certain outcomes. Conclusion: Results support the hypothesis that there are differences in perceived post- and peritraumatic emotional and cognitive reactions after experiencing different types of disasters. However, it should be noted that these findings were not only explained by the type of disaster itself but also by individual and event characteristics. As the study followed an explorative approach, further research paths are discussed to better understand the relationships between variables

    YAP and β-catenin co-operate to drive oncogenesis in basal breast cancer

    Get PDF
    Targeting cancer stem cells (CSCs) can serve as an effective approach toward limiting resistance to therapies and the development of metastases in many forms of cancer. While basal breast cancers encompass cells with CSC features, rational therapies remain poorly established. Here, we show that receptor tyrosine kinase Met signalling promotes the activity of the Hippo component YAP in basal breast cancer. Further analysis revealed enhanced YAP activity within the CSC population. Using both genetic and pharmaceutical approaches, we show that interfering with YAP activity delays basal cancer formation, prevents luminal to basal trans-differentiation and reduces CSC survival. Gene expression analysis of YAP knock-out mammary glands revealed a strong decrease in β-catenin target genes in basal breast cancer, suggesting that YAP is required for nuclear β-catenin activity. Mechanistically, we find that nuclear YAP interacts and overlaps with β-catenin and TEAD4 at common gene regulatory elements. Analysis of proteomic data from primary breast cancer patients identified a significant upregulation of the YAP activity signature in basal compared to other breast cancers, suggesting that YAP activity is limited to basal types. Our findings demonstrate that in basal breast cancers, β-catenin activity is dependent on YAP signalling and controls the CSC program. These findings suggest that targeting the YAP/TEAD4/β-catenin complex offers a potential therapeutic strategy for eradicating CSCs in basal (triple-negative) breast cancers

    Schumacher's quantum data compression as a quantum computation

    Full text link
    An explicit algorithm for performing Schumacher's noiseless compression of quantum bits is given. This algorithm is based on a combinatorial expression for a particular bijection among binary strings. The algorithm, which adheres to the rules of reversible programming, is expressed in a high-level pseudocode language. It is implemented using O(n3)O(n^3) two- and three-bit primitive reversible operations, where nn is the length of the qubit strings to be compressed. Also, the algorithm makes use of O(n)O(n) auxiliary qubits; however, space-saving techniques based on those proposed by Bennett are developed which reduce this workspace to O(n)O(\sqrt{n}) while increasing the running time by less than a factor of two.Comment: 37 pages, no figure

    Current density inhomogeneity throughout the thickness of superconducting films and its effect on their irreversible magnetic properties

    Full text link
    We calculate the distribution of the current density jj in superconducting films along the direction of an external field applied perpendicular to the film plane. Our analysis reveals that in the presence of bulk pinning jj is inhomogeneous on a length scale of order the inter vortex distance. This inhomogeneity is significantly enhanced in the presence of surface pinning. We introduce new critical state model, which takes into account the current density variations throughout the film thickness, and show how these variations give rise to the experimentally observed thickness dependence of % j and magnetic relaxation rate.Comment: RevTex, 9 PS figures. To appear in Phys. Rev.

    The KDKD, ηDs\eta D_s interaction in finite volume and the nature of the Ds0(2317)D_{s^* 0}(2317) resonance

    Full text link
    An SU(4) extrapolation of the chiral unitary theory in coupled channels done to study the scalar mesons in the charm sector is extended to produce results in finite volume. The theory in the infinite volume produces dynamically the Ds0(2317)D_{s^*0}(2317) resonance by means of the coupled channels KDKD, ηDs\eta D_s. Energy levels in the finite box are evaluated and, assuming that they would correspond to lattice results, the inverse problem of determining the bound states and phase shifts in the infinite volume from the lattice data is addressed. We observe that it is possible to obtain accurate KDKD phase shifts and the position of the Ds0(2317)D_{s^*0}(2317) state, but it requires the explicit consideration of the two coupled channels in the analysis if one goes close to the ηDs\eta D_s threshold. We also show that the finite volume spectra look rather different in case the Ds0(2317)D_{s^*0}(2317) is a composite state of the two mesons, or if it corresponds to a non molecular state with a small overlap with the two meson system. We then show that a careful analysis of the finite volume data can shed some light on the nature of the Ds0(2317)D_{s^*0}(2317) resonance as a KDKD molecule or otherwise.Comment: Published versio

    Flux-flow resistivity anisotropy in the instability regime in the a-b plane of epitaxial YBCO thin films

    Full text link
    Measurements of the nonlinear flux-flow resistivity ρ\rho and the critical vortex velocity vϕ\rm v^*_\phi at high voltage bias close to the instability regime predicted by Larkin and Ovchinnikov \cite{LO} are reported along the node and antinode directions of the d-wave order parameter in the \textit{a-b} plane of epitaxial YBa2Cu3O7δYBa_2Cu_3O_{7-\delta} films. In this pinning-free regime, ρ\rho and vϕ\rm v^*_\phi are found to be anisotropic with values in the node direction larger on average by 10% than in the antinode direction. The anisotropy of ρ\rho is almost independent of temperature and field. We attribute the observed results to the anisotropic quasiparticle distribution on the Fermi surface of YBa2Cu3O7δYBa_2Cu_3O_{7-\delta}.Comment: 5 figure
    corecore