2,588 research outputs found

    Phases of a two dimensional large N gauge theory on a torus

    Full text link
    We consider two-dimensional large N gauge theory with D adjoint scalars on a torus, which is obtained from a D+2 dimensional pure Yang-Mills theory on T^{D+2} with D small radii. The two dimensional model has various phases characterized by the holonomy of the gauge field around non-contractible cycles of the 2-torus. We determine the phase boundaries and derive the order of the phase transitions using a method, developed in an earlier work (arxiv:0910.4526), which is nonperturbative in the 'tHooft coupling and uses a 1/D expansion. We embed our phase diagram in the more extensive phase structure of the D+2 dimensional Yang-Mills theory and match with the picture of a cascade of phase transitions found earlier in lattice calculations (arxiv:0710.0098). We also propose a dual gravity system based on a Scherk-Schwarz compactification of a D2 brane wrapped on a 3-torus and find a phase structure which is similar to the phase diagram found in the gauge theory calculation.Comment: 28 pages (+ 17 pages of appendix + 6 pages of ref.); 8 figures; (v2) LaTeX Showkeys command deleted; (v3) refs and minor clarifications added; emphasized the new proposal for applying holography to nonsupersymmetric gauge theory; (v4) modified the arguments about holography; (v5) minor corrections, version appeared in PR

    Conditional expression in corticothalamic efferents reveals a developmental role for nicotinic acetylcholine receptors in modulation of passive avoidance behavior

    Get PDF
    Prenatal nicotine exposure has been linked to attention deficit hyperactivity disorder and cognitive impairment, but the sites of action for these effects of nicotine are still under investigation. High-affinity nicotinic acetylcholine receptors (nAChRs) contain the .2 subunit and modulate passive avoidance (PA) learning in mice. Using an inducible, tetracycline-regulated transgenic system, we generated lines of mice with expression of high-affinity nicotinic receptors restored in specific neuronal populations. One line of mice shows functional .2 subunit-containing nAChRs localized exclusively in corticothalamic efferents. Functional, presynaptic nAChRs are present in the thalamus of these mice as detected by nicotine-elicited rubidium efflux assays from synaptosomes. Knock-out mice lacking high-affinity nAChRs show elevated baseline PA learning, whereas normal baseline PA behavior is restored in mice with corticothalamic expression of these nAChRs. In contrast, nicotine can enhance PA learning in adult wild-type animals but not in corticothalamic-expressing transgenic mice. When these transgenic mice are treated with doxycycline in adulthood to switch off nAChR expression, baseline PA is maintained even after transgene expression is abolished. These data suggest that high-affinity nAChRs expressed on corticothalamic neurons during development are critical for baseline PA performance and provide a potential neuroanatomical substrate for changes induced by prenatal nicotine exposure leading to long-term behavioral and cognitive deficits

    Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data

    Get PDF
    Six years (2003-2008) of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS) and surface wind speeds from Quick Scatterometer (QuikSCAT), the Advanced Microwave Scanning Radiometer (AMSR-E), and the Special Sensor Microwave Imager (SSM/I), are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i) separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii) extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii) identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth

    Ciliary flows in corals ventilate target areas of high photosynthetic oxygen production

    Get PDF
    Most tropical corals live in symbiosis with Symbiodiniaceae algae whose photosynthetic production of oxygen (O2) may lead to excess O2 in the diffusive boundary layer (DBL) above the coral surface. When flow is low, cilia-induced mixing of the coral DBL is vital to remove excess O2 and prevent oxidative stress that may lead to coral bleaching and mortality. Here, we combined particle image velocimetry using O2-sensitive nanoparticles (sensPIV) with chlorophyll (Chla)-sensitive hyperspectral imaging to visualize the microscale distribution and dynamics of ciliary flows and O2 in the coral DBL in relation to the distribution of Symbiodiniaceae Chla in the tissue of the reef building coral, Porites lutea. Curiously, we found an inverse relation between O2 in the DBL and Chla in the underlying tissue, with patches of high O2 in the DBL above low Chla in the underlying tissue surrounding the polyp mouth areas and pockets of low O2 concentrations in the DBL above high Chla in the coenosarc tissue connecting neighboring polyps. The spatial segregation of Chla and O2 is related to ciliary-induced flows, causing a lateral redistribution of O2 in the DBL. In a 2D transport-reaction model of the coral DBL, we show that the enhanced O2 transport allocates parts of the O2 surplus to areas containing less chla, which minimizes oxidative stress. Cilary flows thus confer a spatially complex mass transfer in the coral DBL, which may play an important role in mitigating oxidative stress and bleaching in corals

    Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    Get PDF
    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations

    Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds

    Get PDF
    The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols' physical and hence optical properties. Observational studies of aerosol–cloud interactions evaluate the aerosol concentration using optical parameters, such as the aerosol optical depth (AOD), which can be affected by aerosol humidification. In this study we evaluate the RH background and variance values, in the lower cloudy atmosphere, an additional source of variance in AOD values beside the natural changes in aerosol concentration. In addition, we estimate the bias in RH and AOD, related to cloud thickness. This provides the much needed range of RH-related biases in studies of aerosol–cloud interaction. Twelve years of radiosonde measurements (June–August) in thirteen globally distributed stations are analyzed. The estimated non-biased AOD variance due to day-to-day changes in RH is found to be around 20% and the biases linked to cloud development around 10%. Such an effect is important and should be considered in direct and indirect aerosol effect estimations but it is inadequate to account for most of the AOD trend found in observational studies of aerosol–cloud interactions

    Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    Get PDF
    The differences in North African dust emission regions and transport routes, between the boreal winter and summer, are thoroughly documented. Here we re-examine the spatial and temporal characteristics of dust transport over the tropical and subtropical North Atlantic Ocean, using 10 yr of satellite data, in order to better characterize the different dust transport periods. We see a robust annual triplet: a discernible rhythm of transatlantic dust weather . The proposed annual partition is composed of two heavy loading periods, associated here with a northern-route period and southern-route period, and one light-loading period, accompanied by unusually low average optical depth of dust. The two dusty periods are quite different in character: their duration, transport routes, characteristic aerosol loading and frequency of pronounced dust episodes. The southern-route period lasts ~4 months. It is characterized by a relatively steady southern positioning, low frequency of dust events, low background values and high variance in dust loading. The northern-route period lasts ~6.5 months and is associated with a steady drift northward of ~0.1 latitude day−1, reaching ~1500 km north of the southern-route. The northern period is characterized by higher frequency of dust events, higher (and variable) background and smaller variance in dust loading. It is less episodic than the southern period. Transitions between the periods are brief. Separation between the southern and northern periods is marked by northward latitudinal shift in dust transport and by moderate reduction in the overall dust loading. The second transition, between the northern and southern periods, commences with an abrupt reduction in dust loading and rapid shift southward of ~0.2 latitude day−1, and ~1300 km in total. Based on cross-correlation analyses, we attribute the observed rhythm to the contrast between the northwestern and southern Saharan dust source spatial distributions. Despite the vast difference in areas, the Bodélé Depression, located in Chad, appears to modulate transatlantic dust patterns about half the time
    • …
    corecore