137 research outputs found

    Global Spiral Modes in NGC 1566: Observations and Theory

    Get PDF
    We present an observational and theoretical study of the spiral structure in galaxy NGC 1566. A digitized image of NGC 1566 in I-band was used for measurements of the radial dependence of amplitude variations in the spiral arms. We use the known velocity dispersion in the disk of NGC 1566, together with its rotation curve, to construct linear and 2D nonlinear simulations which are then compared with observations. A two-armed spiral is the most unstable linear global mode in the disk of NGC 1566. The nonlinear simulations are in agreement with the results of the linear modal analysis, and the theoretical surface amplitude and the velocity residual variations across the spiral arms are in qualitative agreement with the observations. The spiral arms found in the linear and nonlinear simulations are considerably shorter than those observed in the disk of NGC 1566. We argue therefore, that the surface density distribution in the disk of the galaxy NGC 1566 was different in the past, when spiral structure in NGC 1566 was linearly growing.Comment: 41 pages, 20 figures, to be published in the Astrophysical Journa

    Surface Brightness Gradients Produced by the Ring Waves of Star Formation

    Get PDF
    We compute surface brightness profiles of galactic disks for outwardly propagating waves of star formation with a view to investigate the stellar populations in ring galaxies. We consider two mechanisms which can create outwardly propagating star forming rings in a purely gaseous disk --- a self-induced wave and a density wave. We show that the surface brightness profiles produced by both scenarios of ring formation are similar and are strongly sensitive to the velocity of the wave. The results of our computations are compared with the observational quantities sensitive to the young and old stellar populations in the ring galaxies A0035-335 (the Cartwheel galaxy) and VIIZw466. The best fit to the observed radial H_alpha surface brightness distribution in the Cartwheel galaxy is obtained for a wave velocity of about 90 km/s. The red continuum brightness of the ring can be fully explained by the evolving stars present in the trailing part of the wave. However the red continuum brightness in regions internal to the ring indicates that the wave of star formation propagates in a pre-existing stellar disk in the Cartwheel. The H_alpha and K-band surface brightness profiles in VIIZw466 match the values expected from stellar populations produced by a wave of star formation propagating in a purely gaseous disk very well. We conclude that VIIZw466 is probably experiencing the first event of star formation in the disk.Comment: Uses aas2pp4.sty and epsfig.sty, 15 pages To appear in Astrophysical Journal, March 10, 199

    Young stars in the periphery of the Large Magellanic Cloud

    Full text link
    Despite their close proximity, the complex interplay between the two Magellanic Clouds, the Milky Way, and the resulting tidal features, is still poorly understood. Recent studies have shown that the Large Magellanic Cloud (LMC) has a very extended disk strikingly perturbed in its outskirts. We search for recent star formation in the far outskirts of the LMC, out to ~30 degrees from its center. We have collected intermediate-resolution spectra of thirty-one young star candidates in the periphery of the LMC and measured their radial velocity, stellar parameters, distance and age. Our measurements confirm membership to the LMC of six targets, for which the radial velocity and distance values match well those of the Cloud. These objects are all young (10-50 Myr), main-sequence stars projected between 7 and 13 degrees from the center of the parent galaxy. We compare the velocities of our stars with those of a disk model, and find that our stars have low to moderate velocity differences with the disk model predictions, indicating that they were formed in situ. Our study demonstrates that recent star formation occurred in the far periphery of the LMC, where thus far only old objects were known. The spatial configuration of these newly-formed stars appears ring-like with a radius of 12 kpc, and a displacement of 2.6 kpc from the LMC's center. This structure, if real, would be suggestive of a star-formation episode triggered by an off-center collision between the Small Magellanic Cloud and the LMC's disk.Comment: Accepted for publication in MNRA

    Formation of Plumes in Head-on Collisions of Galaxies

    Get PDF
    Using N-body and SPH modeling we perform 3D numerical simulations of head-on collisions between gas rich disk galaxies, including collisions between counter-rotating disks and off-center collisions. Pure stellar intruders do not produce gaseous plumes similar to those seen in the Cartwheel and VII Zw466 complexes of interacting galaxies; the presence of gas in an intruder galaxy and radiative cooling are important for the formation of a gaseous plume extending from the disk of a target galaxy. A noticeable plume structure can be formed if the mass of an intruder is a few percent of the mass of the primary. The halo of the intruder is stripped in the collision, and dispersed particles form a broad stellar bridge connecting the two galaxies. The fraction of the intruder's halo dispersed in the collision depends on the total mass of the intruder, and low-mass intruders lose most of their mass.Comment: 15 pages, 14 figures in GIF. To appear ApJ. Vol. 505 #

    Water Resources Management In Support Of Raw Region Based On Decoupling Effect

    Get PDF
    It determines the presence of the decoupling effect in the Russians raw regions materials by using water. Developed models that explain the relationship between the gross regional product and water intake. It proved no effect on the growth of water consumption in most regions of the reference commodity. Recommendations for the decoupling effect development in support of Russians raw regions

    Origin of TeV Galactic Cosmic Rays

    Full text link
    We consider a possibility of identification of sources of cosmic rays (CR) of the energy above 1 TeV via observation of degree-scale extended gamma-ray emission which traces the locations of recent sources in the Galaxy. Such emission in the energy band above 100 GeV is produced by CR nuclei and electrons released by the sources and spreading into the interstellar medium. We use the data from the Fermi gamma-ray telescope to locate the degree-scale 100 GeV gamma-ray sources. We find that the number of such sources and their overall power match to those expected when CRs injection events happen every ~100 yr in portions of ~1e50 erg. We find that most of the sources are associated to pulsars with spin down age less than ~30 kyr and hence to the recent supernova explosions. This supports the hypothesis of supernova origin of Galactic CRs. We notice that the degree-scale extended emission does not surround shell-like supernova remnants without pulsars. Based on this observation, we argue that the presence of the pulsar is essential for the CR acceleration process. We expect that a significant fraction of the degree-scale sources should be detectable as extended sources with km3-scale neutrino detectors.Comment: 14 pages, 14 figures, accepted for publication in Phys.Rev.

    Proper Motions in the Galactic Bulge: Plaut's Window

    Full text link
    A proper motion study of a field of 20' x 20' inside Plaut's low extinction window (l,b)=(0 deg,-8 deg), has been completed. Relative proper motions and photographic BV photometry have been derived for ~21,000 stars reaching to V~20.5 mag, based on the astrometric reduction of 43 photographic plates, spanning over 21 years of epoch difference. Proper motion errors are typically 1 mas/yr and field dependent systematics are below 0.2 mas/yr. Cross-referencing with the 2MASS catalog yielded a sample of ~8,700 stars, from which predominantly disk and bulge subsamples were selected photometrically from the JH color-magnitude diagram. The two samples exhibited different proper-motion distributions, with the disk displaying the expected reflex solar motion as a function of magnitude. Galactic rotation was also detected for stars between ~2 and ~3 kpc from us. The bulge sample, represented by red giants, has an intrinsic proper motion dispersion of (sigma_l,sigma_b)=(3.39, 2.91)+/-(0.11,0.09) mas/yr, which is in good agreement with previous results, and indicates a velocity anisotropy consistent with either rotational broadening or tri-axiality. A mean distance of 6.37^{+0.87}_{-0.77} kpc has been estimated for the bulge sample, based on the observed K magnitude of the horizontal branch red clump. The metallicity [M/H] distribution was also obtained for a subsample of 60 bulge giants stars, based on calibrated photometric indices. The observed [M/H] shows a peak value at [M/H]~-0.1 with an extended metal poor tail and around 30% of the stars with supersolar metallicity. No change in proper motion dispersion was observed as a function of [M/H]. We are currently in the process of obtaining CCD UBVRI photometry for the entire proper-motion sample of ~21,000 stars.Comment: Submitted to AJ April 17th 2007. Accepted June 8th 2007. 45 pages, 14 figure

    The mechanism of industrial educational clusters creation as managerial entities of vocational education

    Get PDF
    © 2016, Econjournals. All rights reserved.The relevance of the paper is conditioned by the increasing role of vocational education in the regional economy. In modern conditions vocational education is regarded as a system of integrative interaction of education, science and industry, aimed at the development of a specialist ready for the life-long learning, capable to a certain type of professional activities, self-organization and competitiveness on the labor market. The aim of the paper is to develop the mechanism of branch educational clusters’ creation as the entities of vocational education’s management. The leading method is the method of action research, allowing to obtain new knowledge about vocational education’s management and to propose mechanisms for its optimization to obtain qualitatively new results of vocational training process. The article defines the essence of an industrial educational cluster as a set of vocational educational institutions, united by industrial features and partnerships with industrial enterprises; presents the mechanisms of interaction between labor market and vocational education; describes the mechanism of educational clusters’ formation on the basis of vertical integration of educational institutions; reveals the mechanism of industrial educational clusters’ formation on the basis of social partnership of the manufacture and vocational educational institutions. The paper submissions can be useful for scientific and pedagogical staff of vocational educational system, specialists of educational managerial bodies and regional authorities

    Dynamics of Gaseous Disks in a Non-axisymmetric Dark Halo

    Full text link
    The dynamics of a galactic disk in a non-axisymmetric (triaxial) dark halo is studied in detail using high-resolution, numerical, hydrodynamical models. A long-lived, two-armed spiral pattern is generated for a wide range of parameters. The spiral structure is global, and the number of turns can be two or three, depending on the model parameters. The morphology and kinematics of the spiral pattern are studied as functions of the halo and disk parameters. The spiral structure rotates slowly, and its angular velocity varies quasi-periodically. Models with differing relative halo masses, halo semi-axis ratios, distributions of matter in the disk, Mach numbers in the gaseous component, and angular rotational velocities of their halos are considered.Comment: 22 pages, 11 figure

    Gravitational stability and dynamical overheating of stellar disks of galaxies

    Full text link
    We use the marginal stability condition for galactic disks and the stellar velocity dispersion data published by different authors to place upper limits on the disk local surface density at two radial scalelengths R=2hR=2h. Extrapolating these estimates, we constrain the total mass of the disks and compare these estimates to those based on the photometry and color of stellar populations. The comparison reveals that the stellar disks of most of spiral galaxies in our sample cannot be substantially overheated and are therefore unlikely to have experienced a significant merging event in their history. The same conclusion applies to some, but not all of the S0 galaxies we consider. However, a substantial part of the early type galaxies do show the stellar velocity dispersion well in excess of the gravitational stability threshold suggesting a major merger event in the past. We find dynamically overheated disks among both seemingly isolated galaxies and those forming pairs. The ratio of the marginal stability disk mass estimate to the total galaxy mass within four radial scalelengths remains within a range of 0.4---0.8. We see no evidence for a noticeable running of this ratio with either the morphological type or color index.Comment: 25 pages, 5 figures, accepted to Astronomy Letter
    corecore