120 research outputs found

    Altered expression of transforming growth factor-βs in chronic renal rejection

    Get PDF
    Altered expression of transforming growth factor-βs in chronic renal rejection. We examined the altered expression of transforming growth factor-βs in chronic renal rejection in humans, including transforming growth factor beta-1 (TGF-β1), TGF-β2, TGF-β3 and their receptors, transforming growth factor beta receptor type I (TβR-I) and TβR-II. Using Northern blot analysis and immunohistochemistry, 10 specimens of chronically rejected and 8 normal kidney samples were analyzed. By Northern blot analysis the expression of mRNA encoding TGF-β1, TGF-β2, TGF-β3 (P < 0.02), TβR-I and TβR-II (P < 0.02) was decreased in chronically rejected renal cortex samples, compared to normal controls. Immunohistochemical analysis of the normal renal cortex showed strong immunostaining for TGF-β1 and TGF-β3, and mild immunostaining for TGF-β2 in the proximal and distal tubulointerstitium, but no signal for any of the TGF-β isoforms in the glomeruli or in the cortical vessels. In sharp contrast, the glomeruli and the cortical vessels of the rejected kidney specimens exhibited strong immunostaining for TGF-β1 and TGF-β3, whereas the tubules revealed a decrease in immunoreactivity. TβRI and TβRII immunostaining showed similar changes as observed with TGF-β1 and TGF-β3 antibodies. There was a concomitant increase in B-cell accumulation in the glomeruli, while T-cells and macrophages were diffusely abundant in the rejected samples. Since TGF-βs are potent inducers of extracellular matrix proteins and have been shown to be involved in fibrotic disease, the increase in TGF-β1 and TGF-β3 immunoreactivity in the glomeruli suggests that there is a redistribution in TGF-β expression in chronic renal allograft rejection. Together with changes affected by B-cell mediated immunity, the above alterations might contribute to the histopathological changes that occur in this disorder, such as intimal fibrosis, arteriosclerosis and glomerular and tubular sclerosis

    Epidermal growth factor receptor expression in pancreatic lesions induced in the rat by azaserine.

    Get PDF
    In the present study, the expression of the epidermal growth factor receptor (EGFR) was investigated in putative preneoplastic and neoplastic acinar cell lesions induced in the rat pancreas by azaserine, using Northern blotting, in situ hybridisation (ISH) and immunohistochemistry. EGFR protein levels were decreased in putative preneoplastic eosinophilic acinar cell lesions (atypical acinar cell nodules, AACN) in comparison with normal acinar cells of the pancreas. However, EGFR mRNA expression correlated positively with the volume of AACN in pancreatic homogenates and ISH showed equal or stronger EGFR mRNA expression in AACN than in the surrounding normal acinar cells. Neither EGFR protein nor EGFR mRNA was detected in more advanced lesions such as acinar adenocarcinomas (in situ). Moreover, EGFR protein expression showed an inverse relationship with the mitotic rate of the acinar cells. These findings suggest that down-regulation of EGFR at the protein level may abrogate negative constraints on cell growth, which may stimulate the development of putative preneoplastic AACN to more advanced lesions and, ultimately, acinar adenocarcinomas

    Pathophysiology of acute experimental pancreatitis: Lessons from genetically engineered animal models and new molecular approaches

    Get PDF
    The incidence of acute pancreatitis is growing and worldwide population-based studies report a doubling or tripling since the 1970s. 25% of acute pancreatitis are severe and associated with histological changes of necrotizing pancreatitis. There is still no specific medical treatment for acute pancreatitis. The average mortality resides around 10%. In order to develop new specific medical treatment strategies for acute pancreatitis, a better understanding of the pathophysiology during the onset of acute pancreatitis is necessary. Since it is difficult to study the early acinar events in human pancreatitis, several animal models of acute pancreatitis have been developed. By this, it is hoped that clues into human pathophysiology become possible. In the last decade, while employing molecular biology techniques, a major progress has been made. The genome of the mouse was recently sequenced. Various strategies are possible to prove a causal effect of a single gene or protein, using either gain-of-function (i.e., overexpression of the protein of interest) or loss-of-function studies (i.e., genetic deletion of the gene of interest). The availability of transgenic mouse models and gene deletion studies has clearly increased our knowledge about the pathophysiology of acute pancreatitis and enables us to study and confirm in vitro findings in animal models. In addition, transgenic models with specific genetic deletion or overexpression of genes help in understanding the role of one specific protein in a cascade of inflammatory processes such as pancreatitis where different proteins interact and co-react. This review summarizes the recent progress in this field. Copyright (c) 2005 S. Karger AG, Basel

    Transgenic Expression of Nonclassically Secreted FGF Suppresses Kidney Repair

    Get PDF
    FGF1 is a signal peptide-less nonclassically released growth factor that is involved in angiogenesis, tissue repair, inflammation, and carcinogenesis. The effects of nonclassical FGF export in vivo are not sufficiently studied. We produced transgenic mice expressing FGF1 in endothelial cells (EC), which allowed the detection of FGF1 export to the vasculature, and studied the efficiency of postischemic kidney repair in these animals. Although FGF1 transgenic mice had a normal phenotype with unperturbed kidney structure, they showed a severely inhibited kidney repair after unilateral ischemia/reperfusion. This was manifested by a strong decrease of postischemic kidney size and weight, whereas the undamaged contralateral kidney exhibited an enhanced compensatory size increase. In addition, the postischemic kidneys of transgenic mice were characterized by hyperplasia of interstitial cells, paucity of epithelial tubular structures, increase of the areas occupied by connective tissue, and neutrophil and macrophage infiltration. The continuous treatment of transgenic mice with the cell membrane stabilizer, taurine, inhibited nonclassical FGF1 export and significantly rescued postischemic kidney repair. It was also found that similar to EC, the transgenic expression of FGF1 in monocytes and macrophages suppresses kidney repair. We suggest that nonclassical export may be used as a target for the treatment of pathologies involving signal peptide-less FGFs

    Can We Detect Chronic Pancreatitis With Low Serum Pancreatic Enzyme Levels?

    Get PDF
    Objectives: The aims of this study were to evaluate whether serum pancreatic enzyme levels could be used to aid screening for chronic pancreatitis (CP). Methods: 170 healthy volunteers were screened and prospectively enrolled in the control group. 150 patients who were diagnosed with calcific CP were enrolled in the patient group by retrospective review. Serum amylase and lipase levels were compared between the 2 groups. Results: The mean values ± SD of the control group were compared with those of the patient group for serum amylase level (48.1 ± 13.2 vs 34.8 ± 17.2 U/L, P < 0.001) and serum lipase level (26.4 ± 11.3 vs 16.3 ± 11.2 U/L, P < 0.001). On the receiver operating characteristic curve analysis for amylase level, area under the curve was 0.740 (95% confidence interval), and sensitivity and specificity were 38.7% and 94.1%, respectively, with a cutoff value of 27.5 U/L. On the receiver operating characteristic curve analysis for lipase level, area under the curve was 0.748 (95% confidence interval), and sensitivity and specificity were 33.3% and 95.9%, respectively, with a cutoff value of 10.5 U/L. Conclusions: Our results suggest that low serum pancreatic enzyme levels can be used to aid in detection of CP

    Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer

    Get PDF
    Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1(Bright) CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b(+)/Gr1(+)/Ly6G(−)/Ly6C(hi)) significantly increase the frequency of ALDH1(Bright) CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14(+) peripheral blood monocytes into Mo-MDSC (CD14(+)/HLA-DR(low/−)) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1(Bright) CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1(Bright) CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1(Bright) CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-014-1527-x) contains supplementary material, which is available to authorized users

    Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma has a median survival of less than 6 months from diagnosis. This is due to the difficulty in early diagnosis, the aggressive biological behaviour of the tumour and a lack of effective therapies for advanced disease. Mammalian heparanase is a heparan-sulphate proteoglycan cleaving enzyme. It helps to degrade the extracellular matrix and basement membranes and is involved in angiogenesis. Degradation of extracellular matrix and basement membranes as well as angiogenesis are key conditions for tumour cell spreading. Therefore, we have analysed the expression of heparanase in human pancreatic cancer tissue and cell lines. Heparanase is expressed in cell lines derived from primary tumours as well as from metastatic sites. By immunohistochemical analysis, it is preferentially expressed at the invading edge of a tumour at both metastatic and primary tumour sites. There is a trend towards heparanase expression in metastasising tumours as compared to locally growing tumours. Postoperative survival correlates inversely with heparanase expression of the tumour reflected by a median survival of 34 and 17 month for heparanase negative and positive tumours, respectively. Our results suggest, that heparanase promotes cancer cell invasion in pancreatic carcinoma and could be used as a prognostic indicator for postoperative survival of patients

    Expression of a protease-resistant insulin-like growth factor-binding protein-4 inhibits tumour growth in a murine model of breast cancer

    Get PDF
    BACKGROUND: Insulin-like growth factor 1 (IGF1) promotes breast cancer and disease progression. Bioavailability of IGF1 is modulated by IGF-binding proteins (IGFBPs). IGFBP4 inhibits IGF1 activity but cleavage by pregnancy-associated plasma protein-A (PAPP-A) protease releases active IGF1. METHODS: Expression of IGF pathway components and PAPP-A was assessed by western blot or RT-PCR. IGFBP4 (dBP4) resistant to PAPP-A cleavage, but retaining IGF-binding capacity, was used to block IGF activity in vivo. 4T1.2 mouse mammary adenocarcinoma cells transfected with empty vector, vector expressing wild-type IGFBP4 or vector expressing dBP4 were implanted in the mammary fat pad of BALB/c mice and tumour growth was assessed. Tumour angiogenesis and endothelial cell apoptosis were assessed by immunohistochemistry. RESULTS: 4T1.2 cells expressed the IGF1R receptor and IGFBP4. PAPP-A was expressed within mammary tumours but not by 4T1.2 cells. Proliferation and vascular endothelial growth factor (VEGF) production by 4T1.2 cells was increased by IGF1(E3R) (recombinant IGF1 resistant to binding by IGFBPs) but not by wild-type IGF1. IGF1-stimulated microvascular endothelial cell proliferation was blocked by recombinant IGFBP4. 4T1.2 tumours expressing dBP4 grew significantly more slowly than controls or tumours expressing wild-type IGFBP4. Inhibition of tumour growth by dBP4 was accompanied by the increased endothelial cell apoptosis. CONCLUSION: Protease-resistant IGFBP4 blocks IGF activity, tumour growth and angiogenesis
    corecore