33 research outputs found

    Pulmonary Specific Ancillary Treatment for Pediatric Acute Respiratory Distress Syndrome:From the Second Pediatric Acute Lung Injury Consensus Conference

    Get PDF
    OBJECTIVES: We conducted an updated review of the literature on pulmonary-specific ancillary therapies for pediatric acute respiratory distress syndrome (PARDS) to provide an update to the Pediatric Acute Lung Injury Consensus Conference recommendations and statements about clinical practice and research. DATA SOURCES: MEDLINE (Ovid), Embase (Elsevier), and CINAHL Complete (EBSCOhost). STUDY SELECTION: Searches were limited to children, PARDS or hypoxic respiratory failure and overlap with pulmonary-specific ancillary therapies DATA EXTRACTION: Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS: The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize evidence and develop recommendations. Twenty-six studies were identified for full-text extraction. Four clinical recommendations were generated, related to use of inhaled nitric oxide, surfactant, prone positioning, and corticosteroids. Two good practice statements were generated on the use of routine endotracheal suctioning and installation of isotonic saline prior to endotracheal suctioning. Three research statements were generated related to: the use of open versus closed suctioning, specific methods of airway clearance, and various other ancillary therapies. CONCLUSIONS: The evidence to support or refute any of the specific ancillary therapies in children with PARDS remains low. Further investigation, including a focus on specific subpopulations, is needed to better understand the role, if any, of these various ancillary therapies in PARDS.</p

    Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials

    Get PDF
    Background COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. Methods and findings Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, -5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID- 19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. Conclusions The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines.Fil: Korang, Steven Kwasi. Copenhagen University Hospital; DinamarcaFil: von Rohden, Elena. Copenhagen University Hospital; DinamarcaFil: Veroniki, Areti Angeliki. Imperial College London; Reino Unido. St. Michael’s Hospital; CanadáFil: Ong, Giok. John Radcliffe Hospital; Reino UnidoFil: Ngalamika, Owen. University of Zambia; ZambiaFil: Siddiqui, Faiza. Copenhagen University Hospital; DinamarcaFil: Juul, Sophie. Copenhagen University Hospital; DinamarcaFil: Nielsen, Emil Eik. Copenhagen University Hospital; DinamarcaFil: Feinberg, Joshua Buron. Copenhagen University Hospital; DinamarcaFil: Petersen, Johanne Juul. Copenhagen University Hospital; DinamarcaFil: Legart, Christian. Universidad de Copenhagen; Dinamarca. Copenhagen University Hospital; DinamarcaFil: Kokogho, Afoke. Henry M. Jackson Foundation Medical Research International; NigeriaFil: Maagaard, Mathias. Copenhagen University Hospital; Dinamarca. Zealand University Hospital; DinamarcaFil: Klingenberg, Sarah. Copenhagen University Hospital; DinamarcaFil: Thabane, Lehana. Mcmaster University; CanadáFil: Bardach, Ariel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Ciapponi, Agustín. Instituto de Efectividad Clínica y Sanitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Thomsen, Allan Randrup. Universidad de Copenhagen; DinamarcaFil: Jakobsen, Janus C.. University of Southern Denmark; Dinamarca. Copenhagen University Hospital; DinamarcaFil: Gluud, Christian. Copenhagen University Hospital; Dinamarca. University of Southern Denmark; Dinamarc

    Executive Summary:International Clinical Practice Guidelines for Pediatric Ventilator Liberation, A Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Document

    Get PDF
    Rationale: Pediatric-specific ventilator liberation guidelines are lacking despite the many studies exploring elements of extubation readiness testing. The lack of clinical practice guidelines has led to significant and unnecessary variation in methods used to assess pediatric patients’ readiness for extubation. Methods: Twenty-six international experts comprised a multiprofessional panel to establish pediatrics-specific ventilator liberation clinical practice guidelines, focusing on acutely hospitalized children receiving invasive mechanical ventilation for more than 24 hours. Eleven key questions were identified and first prioritized using the Modified Convergence of Opinion on Recommendations and Evidence. A systematic review was conducted for questions that did not meet an a priori threshold of &gt;80% agreement, with Grading of Recommendations, Assessment, Development, and Evaluation methodologies applied to develop the guidelines. The panel evaluated the evidence and drafted and voted on the recommendations. Measurements and Main Results: Three questions related to systematic screening using an extubation readiness testing bundle and a spontaneous breathing trial as part of the bundle met Modified Convergence of Opinion on Recommendations criteria of &gt;80% agreement. For the remaining eight questions, five systematic reviews yielded 12 recommendations related to the methods and duration of spontaneous breathing trials, measures of respiratory muscle strength, assessment of risk of postextubation upper airway obstruction and its prevention, use of postextubation noninvasive respiratory support, and sedation. Most recommendations were conditional and based on low to very low certainty of evidence. Conclusions: This clinical practice guideline provides a conceptual framework with evidence-based recommendations for best practices related to pediatric ventilator liberation.</p

    Executive Summary: International Clinical Practice Guidelines for Pediatric Ventilator Liberation, A PALISI Network Document

    Get PDF
    RATIONALE: Pediatric specific ventilator liberation guidelines are lacking despite the many studies exploring elements of extubation readiness testing. The lack of clinical practice guidelines has led to significant and unnecessary variation in methods used to assess pediatric patients' readiness for extubation. METHODS: Twenty-six international experts comprised a multi-professional panel to establish pediatric specific ventilator liberation clinical practice guidelines, focusing on acutely hospitalized children receiving invasive mechanical ventilation for more than 24 hours. Eleven key questions were identified and first prioritized using the Modified Convergence of Opinion on Recommendations and Evidence. Systematic review was conducted for questions which did not meet an a-priori threshold of ≥80% agreement, with Grading of Recommendations, Assessment, Development, and Evaluation methodologies applied to develop the guidelines. The panel evaluated the evidence, drafted, and voted on the recommendations. MEASUREMENTS AND MAIN RESULTS: Three questions related to systematic screening, using an extubation readiness testing bundle and use of a spontaneous breathing trial as part of the bundle met Modified Convergence of Opinion on Recommendations criteria of ≥80% agreement. For the remaining 8 questions, 5 systematic reviews yielded 12 recommendations related to the methods and duration of spontaneous breathing trials; measures of respiratory muscle strength; assessment of risk of post-extubation upper airway obstruction and its prevention; use of post-extubation non-invasive respiratory support; and sedation. Most recommendations were conditional and based on low to very low certainty of evidence. CONCLUSION: This clinical practice guideline provides a conceptual framework with evidence-based recommendations for best practices related to pediatric ventilator liberation.The project was funded by Eunice Kennedy Shriver National Institute of Child Health (NICHD) and Human Development National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) (R13HD102137), in addition to funds from department of pediatrics at Indiana University School of Medicine, Indianapolis, Indiana

    Executive Summary of the Second International Guidelines for the Diagnosis and Management of Pediatric Acute Respiratory Distress Syndrome (PALICC-2)

    Get PDF
    OBJECTIVES: We sought to update our 2015 work in the Second Pediatric Acute Lung Injury Consensus Conference (PALICC-2) guidelines for the diagnosis and management of pediatric acute respiratory distress syndrome (PARDS), considering new evidence and topic areas that were not previously addressed. DESIGN: International consensus conference series involving 52 multidisciplinary international content experts in PARDS and four methodology experts from 15 countries, using consensus conference methodology, and implementation science. SETTING: Not applicable. PATIENTS: Patients with or at risk for PARDS. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Eleven subgroups conducted systematic or scoping reviews addressing 11 topic areas: 1) definition, incidence, and epidemiology; 2) pathobiology, severity, and risk stratification; 3) ventilatory support; 4) pulmonary-specific ancillary treatment; 5) nonpulmonary treatment; 6) monitoring; 7) noninvasive respiratory support; 8) extracorporeal support; 9) morbidity and long-term outcomes; 10) clinical informatics and data science; and 11) resource-limited settings. The search included MEDLINE, EMBASE, and CINAHL Complete (EBSCOhost) and was updated in March 2022. Grading of Recommendations, Assessment, Development, and Evaluation methodology was used to summarize evidence and develop the recommendations, which were discussed and voted on by all PALICC-2 experts. There were 146 recommendations and statements, including: 34 recommendations for clinical practice; 112 consensus-based statements with 18 on PARDS definition, 55 on good practice, seven on policy, and 32 on research. All recommendations and statements had agreement greater than 80%. CONCLUSIONS: PALICC-2 recommendations and consensus-based statements should facilitate the implementation and adherence to the best clinical practice in patients with PARDS. These results will also inform the development of future programs of research that are crucially needed to provide stronger evidence to guide the pediatric critical care teams managing these patients.</p

    Operational Definitions related to Pediatric Ventilator Liberation

    Get PDF
    BACKGROUND: Common, operational definitions are crucial to assess interventions and outcomes related to pediatric mechanical ventilation. These definitions can reduce unnecessary variability amongst research and quality improvement efforts, to ensure findings are generalizable and can be pooled to establish best practices. RESEARCH QUESTION: Can we establish operational definitions for key elements related to pediatric ventilator liberation using a combination of detailed literature review and consensus-based approaches? STUDY DESIGN AND METHODS: A panel of 26 international experts in pediatric ventilator liberation, two methodologists and two librarians conducted systematic reviews on eight topic areas related to pediatric ventilator liberation. Through a series of virtual meetings, we established draft definitions which were voted upon using an anonymous web-based process. Definitions were revised by incorporating extracted data gathered during the systematic review and discussed in another consensus meeting. A second round of voting was conducted to confirm the final definitions. RESULTS: In eight topic areas identified by the experts, 16 preliminary definitions were established. Based on initial discussion and the first round of voting, modifications were suggested for 11 of the 16 definitions. There was significant variability in how these items were defined in the literature reviewed. The final round of voting achieved ≥80% agreement for all 16 definitions in the following areas: what constitutes respiratory support (invasive mechanical ventilation and non-invasive respiratory support), liberation and failed attempts to liberate from invasive mechanical ventilation, liberation from respiratory support, duration of non-invasive respiratory support, total duration of invasive mechanical ventilation, spontaneous breathing trials, extubation readiness testing, 28-ventilator free days, and planned vs rescue use of post-extubation non-invasive respiratory support. INTERPRETATION: We propose these consensus-based definitions for elements of pediatric ventilator liberation, informed by evidence, be used for future quality improvement initiatives and research studies to improve generalizability, and facilitate comparison.The project was funded by Eunice Kennedy Shriver National Institute of Child Health (NICHD) and Human Development National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) (R13HD102137), in addition to funds from the Department of Pediatrics at Indiana University School of Medicine, Indianapolis, Indiana

    Antibiotics for hospital-acquired pneumonia in neonates and children

    No full text
    BACKGROUND: Hospital‐acquired pneumonia is one of the most common hospital‐acquired infections in children worldwide. Most of our understanding of hospital‐acquired pneumonia in children is derived from adult studies. To our knowledge, no systematic review with meta‐analysis has assessed the benefits and harms of different antibiotic regimens in neonates and children with hospital‐acquired pneumonia. OBJECTIVES: To assess the beneficial and harmful effects of different antibiotic regimens for hospital‐acquired pneumonia in neonates and children. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, three other databases, and two trial registers to February 2021, together with reference checking, citation searching, and contact with study authors to identify additional studies. SELECTION CRITERIA: We included randomised clinical trials comparing one antibiotic regimen with any other antibiotic regimen for hospital‐acquired pneumonia in neonates and children. DATA COLLECTION AND ANALYSIS: Three review authors independently assessed studies for inclusion, extracted data, and assessed risk of bias. We assessed the certainty of the evidence using the GRADE approach. Our primary outcomes were all‐cause mortality and serious adverse events; our secondary outcomes were health‐related quality of life, pneumonia‐related mortality, non‐serious adverse events, and treatment failure. Our primary time point of interest was at maximum follow‐up. MAIN RESULTS: We included four randomised clinical trials (84 participants). We assessed all trials as having high risk of bias. We did not conduct any meta‐analyses, as the included trials did not compare similar antibiotic regimens. Each of the four trials assessed a different comparison, as follows: cefepime versus ceftazidime; linezolid versus vancomycin; meropenem versus cefotaxime; and ceftobiprole versus cephalosporin. Only one trial reported our primary outcomes of all‐cause mortality and serious adverse events. Three trials reported our secondary outcome of treatment failure. Two trials primarily included community‐acquired pneumonia and hospitalised children with bacterial infections, hence the children with hospital‐acquired pneumonia constituted subgroups of the total sample sizes. Where outcomes were reported, the certainty of the evidence was very low for each of the comparisons. We are unable to draw meaningful conclusions from the numerical results. None of the included trials assessed health‐related quality of life, pneumonia‐related mortality, or non‐serious adverse events. AUTHORS' CONCLUSIONS: The relative beneficial and harmful effects of different antibiotic regimens remain unclear due to the very low certainty of the available evidence. The current evidence is insufficient to support any antibiotic regimen being superior to another. Randomised clinical trials assessing different antibiotic regimens for hospital‐acquired pneumonia in children and neonates are warranted
    corecore