600 research outputs found

    Estimating the Parameters of Bose-Einstein Correlations from the Two-Particle Correlation Function in Multihadronic Final States

    Get PDF
    To estimate the strength of the Bose-Einstein correlations and the radius of the hadronization region in multiparticle production, the two-particle correlation functions RR for identical pairs is adjusted to a parametric function describing the enhancement at small momentum differences. This is usually done by means of a binned uncorrelated least squares fit. This article demonstrates that this procedure underestimates the statistical errors. A recipe is given to construct from the data the covariance matrix To estimate the strength of the Bose-Einstein correlations and the radius of the hadronization region in multiparticle production, the two-particle correlation functions RR for identical pairs is adjusted to a parametric function describing the enhancement at small momentum differences. This is usually done by means of a binned uncorrelated least squares fit. This article demonstrates that this procedure underestimates the statistical errors. A recipe is given to construct from the data the covariance matrix between the bins of the histogram of the two-particle correlation function.Comment: 9 pages, 4 figure

    Femtoscopy of Pb-Pb and pp collisions at the LHC with the ALICE experiment

    Full text link
    We report on the results of femtoscopic analysis of Pb-Pb collisions at sqrt(s_NN)=2.76 TeV and pp collisions at sqrt(s)=0.9, 2.76 and 7 TeV with identical pions and kaons. Detailed femtoscopy studies in heavy-ion collisions at SPS and RHIC have shown that emission region sizes ("HBT radii") decrease with increasing pair transverse momentum k_T, which is understood as a manifestation of the collective behavior of matter. The trend was predicted to persist at the LHC. The data from Pb-Pb collisions confirm the existence of a flowing medium and provide strict constraints on the dynamical models. Similar analysis is carried out for pp collisions for pions and kaons and qualitative similarities to heavy-ion data are seen, especially in collisions producing large number of particles. The observed trends give insight into the soft particle production mechanism in pp collisions. 3D radii were also found to universally scale with event multiplicity in heavy-ion collisions. We extend the range of multiplicities both upwards with the Pb-Pb data and downwards with the pp data to test the scaling in new areas. In particular the high multiplicity pp collisions reach particle densities comparable to the ones measured in peripheral Cu-Cu and Au-Au collisions at RHIC. This allows for the first time to directly compare freeze-out sizes for systems with very different initial states.Comment: 8 pages, 5 figures, Proceedings of the Quark Matter 2011 plenary tal

    Evidence for Hydrodynamic Evolution in Proton-Proton Scattering at LHC Energies

    Full text link
    In pppp scattering at LHC energies, large numbers of elementary scatterings will contribute significantly, and the corresponding high multiplicity events will be of particular interest. Elementary scatterings are parton ladders, identified with color flux-tubes. In high multiplicity events, many of these flux tubes are produced in the same space region, creating high energy densities. We argue that there are good reasons to employ the successful procedure used for heavy ion collisions: matter is assumed to thermalizes quickly, such that the energy from the flux-tubes can be taken as initial condition for a hydrodynamic expansion. This scenario gets spectacular support from very recent results on Bose-Einstein correlations in pppp scattering at 900 GeV at LHC.Comment: 11 pages, 20 figure

    Quantum discord in spin-cluster materials

    Full text link
    The total quantum correlation (discord) in Heisenberg dimers is expressed via the spin-spin correlation function, internal energy, specific heat or magnetic susceptibility. This allows one to indirectly measure the discord through neutron scattering, as well as calorimetric or magnetometric experiments. Using the available experimental data, we found the discord for a number of binuclear Heisenberg substances with both antiferro- and ferromagnetic interactions. For the dimerized antiferromagnet copper nitrate Cu(NO_3)_2*2.5H_2O, the three independent experimental methods named above lead to a discord of approximately 0.2-0.3 bit/dimer at a temperature of 4 K. We also determined the temperature behavior of discord for hydrated and anhydrous copper acetates, as well as for the ferromagnetic binuclear copper acetate complex [Cu_2L(OAc)]*6H_2O, where L is a ligand.Comment: 7 pages, 6 figure

    Multiphoton Effects Enhanced Due to Ultrafast Photon-Number Fluctuations

    Full text link
    Multi-photon processes are the essence of nonlinear optics. Optical harmonics generation and multi-photon absorption, ionization, polymerization or spectroscopy are widely used in practical applications. Generally, the rate of an n-photon effect scales as the n-th order autocorrelation function of the incident light, which is high for light with strong photon-number fluctuations. Therefore `noisy' light sources are much more efficient for multi-photon effects than coherent sources with the same mean power, pulse duration and repetition rate. Here we generate optical harmonics of order 2-4 from bright squeezed vacuum (BSV), a state of light consisting of only quantum noise with no coherent component. We observe up to two orders of magnitude enhancement in the generation of optical harmonics due to ultrafast photon-number fluctuations. This feature is especially important for the nonlinear optics of fragile structures where the use of a `noisy' pump can considerably increase the effect without overcoming the damage threshold

    Hanbury Brown-Twiss interferometry and second-order correlations of inflaton quanta

    Full text link
    The quantum theory of optical coherence is applied to the scrutiny of the statistical properties of the relic inflaton quanta. After adapting the description of the quantized scalar and tensor modes of the geometry to the analysis of intensity correlations, the normalized degrees of first-order and second-order coherence are computed in the concordance paradigm and are shown to encode faithfully the statistical properties of the initial quantum state. The strongly bunched curvature phonons are not only super-Poissonian but also super-chaotic. Testable inequalities are derived in the limit of large angular scales and can be physically interpreted in the light of the tenets of Hanbury Brown-Twiss interferometry. The quantum mechanical results are compared and contrasted with different situations including the one where intensity correlations are the result of a classical stochastic process. The survival of second-order correlations (not necessarily related to the purity of the initial quantum state) is addressed by defining a generalized ensemble where super-Poissonian statistics is an intrinsic property of the density matrix and turns out to be associated with finite volume effects which are expected to vanish in the thermodynamic limit.Comment: 42 pages, 3 included figures; corrected typos; to appear in Physical Review

    Deciphering nonfemtoscopic two-pion correlations in p+pp+p collisions with simple analytical models

    Full text link
    A simple model of nonfemtoscopic particle correlations in proton-proton collisions is proposed. The model takes into account correlations induced by the conservation laws as well as correlations induced by minijets. It reproduces well the two-pion nonfemtoscopic correlations of like-sign and unlike-sign pions in proton-proton collision events at s=900\sqrt{s} = 900 GeV analyzed by the ALICE Collaboration. We also argue that similar nonfemtoscopic correlations can appear in the hydrodynamic picture with event-by-event fluctuating nonsymmetric initial conditions that are typically associated with nonzero higher-order flow harmonics.Comment: 21 pages, 10 figures, misprints correcte
    corecore