429 research outputs found

    Naming of new elements(IUPAC Recommendations 2002)

    Get PDF
    A procedure is proposed to name new elements. After the discovery of a new element is established by a joint IUPAC­IUPAP Working Group, the discoverers are invited to propose a name and a symbol to the IUPAC Inorganic Chemistry Division. Elements can be named after a mythological concept, a mineral, a place or country, a property, or a scientist. After examination and acceptance by the Inorganic Chemistry Division, the proposal follows the accepted IUPAC procedure and is then submitted to the IUPAC Council for approva

    Names for inorganic radicals (IUPAC Recommendations 2000)

    Get PDF
    Introduction: Knowledge of the properties and reactivities of stable inorganic radicals was obtained decades ago through gas-phase studies of various oxides of halogens, sulfur, and nitrogen. More recently, pulse radiolysis and flash photolysis techniques developed in the 1960s made it possible to study short-lived radicals, such as hydrated electrons, hydrogen atoms, and hydroxyl radicals. Because of the high time-resolution of these techniques, absorption spectra and redox properties of these inorganic radicals could be determined. The interest in radicals increased when it was shown that superoxide, or dioxide(1-), is formed in vivo. The discovery that in aerobic organisms enzymes catalyze the disproportionation of this radical resulted in new areas of research, such as radical biology and radicals in medicine. Interest in simple radicals was further boosted most recently by the remarkable observation that the radical nitrogen monoxide is formed enzymatically from the amino acid arginine. Radicals are important in a variety of catalytic processes and in the atmospheric gas and liquid phases; furthermore, a substantial number of inorganic radicals have been observed in interstellar gas clouds. Contents: 1. Introduction 2. Definitions 3. Nomenclature 3.1. Introduction 3.2. Coordination nomenclature 3.2.1. Selection of the central atom 3.2.2. Radicals with net charges 3.2.3. Attached atoms or groups of atoms 3.2.4. The radical dot 3.2.5. Examples 3.3. Substitutive nomenclatur

    Names for muonium and hydrogen atoms and their ions(IUPAC Recommendations 2001)

    Get PDF
    Muons are short-lived species with an elementary positive or negative charge and a mass 207 times that of the electron. These recommendations concern positive muons, given the short lifetime of negative muons. A positive muon mimics a light hydrogen nucleus, and names are given in analogy to existing names for hydrogen-containing compounds. A particle consisting of a positive muon and an electron (”+ e -) is named "muonium" and has the symbol Mu. Examples: "muonium chloride," MuCl, is the equivalent of deuterium chloride, 2 HCl or DCl; "muoniomethane", CH 3 Mu, is the product of the muoniation of methane;and NaMu is "sodium muonide.

    Electron Affinity of Chlorine Dioxide

    Get PDF
    The flowing afterglow technique was used to determine the electron affinity of chlorine dioxide. A value of 2.37 ± 0.10 eV was found by bracketing between the electron affinities of HS° and SF4 as a lower limit and that of NO2 as an upper limit. This value is in excellent agreement with 2.32 eV predicted from a simple thermodynamic cycle involving the reduction potential of the C102/C102- couple and a Gibbs hydration energy identical with that of SO2-

    Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1

    Get PDF
    The wogonin-containing herb Scutellaria baicalensis has successfully been used for curing various diseases in traditional Chinese medicine. Wogonin has been shown to induce apoptosis in different cancer cells and to suppress growth of human cancer xenografts in vivo. However, its direct targets remain unknown. In this study, we demonstrate for the first time that wogonin and structurally related natural flavones, for example, apigenin, chrysin and luteolin, are inhibitors of cyclin-dependent kinase 9 (CDK9) and block phosphorylation of the carboxy-terminal domain of RNA polymerase II at Ser2. This effect leads to reduced RNA synthesis and subsequently rapid downregulation of the short-lived anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) resulting in apoptosis induction in cancer cells. We show that genetic inhibition of Mcl-1 or CDK9 expression by siRNA is sufficient to mimic flavone-induced apoptosis. Pull-down and in silico docking studies demonstrate that wogonin directly binds to CDK9, presumably to the ATP-binding pocket. In contrast, wogonin does not inhibit CDK2, CDK4 and CDK6 at doses that inhibit CDK9 activity. Furthermore, we show that wogonin preferentially inhibits CDK9 in malignant compared with normal lymphocytes. Thus, our study reveals a new mechanism of anti-cancer action of natural flavones and supports CDK9 as a therapeutic target in oncology

    Active removal of waste dye pollutants using Ta[sub]3N[sub]5/W[sub]18O[sub]49 nanocomposite fibres

    Get PDF
    A scalable solvothermal technique is reported for the synthesis of a photocatalytic composite material consisting of orthorhombic Ta3N5 nanoparticles and WOx≀3 nanowires. Through X-ray diffraction and X-ray photoelectron spectroscopy, the as-grown tungsten(VI) sub-oxide was identified as monoclinic W18O49. The composite material catalysed the degradation of Rhodamine B at over double the rate of the Ta3N5 nanoparticles alone under illumination by white light, and continued to exhibit superior catalytic properties following recycling of the catalysts. Moreover, strong molecular adsorption of the dye to the W18O49 component of the composite resulted in near-complete decolourisation of the solution prior to light exposure. The radical species involved within the photocatalytic mechanisms were also explored through use of scavenger reagents. Our research demonstrates the exciting potential of this novel photocatalyst for the degradation of organic contaminants, and to the authors’ knowledge the material has not been investigated previously. In addition, the simplicity of the synthesis process indicates that the material is a viable candidate for the scale-up and removal of dye pollutants on a wider scale
    • 

    corecore