4 research outputs found

    Antiviral efficacy of cerium oxide nanoparticles

    Get PDF
    The authors gratefully acknowledge the financial support by the Estonian Research Council Grants (COVSG2, PRG629, PRG1496), Estonian Centre of Excellence in Research project “Advanced materials and high-technology devices for sustainable energetics, sensorics and nanoelectronics” TK141 (2014-2020.4.01.15-0011) and University of Tartu Development Fund (PLTFYARENG53). The research was partly conducted using the NAMUR+ core facility funded by projects “Center of nanomaterials technologies and research” (2014-2020.4.01.16-0123) and TT13.Nanomaterials are prospective candidates for the elimination of viruses due to their multimodal mechanisms of action. Here, we tested the antiviral potential of a largely unexplored nanoparticle of cerium dioxide (CeO2). Two nano-CeO2 with opposing surface charge, (+) and (−), were assessed for their capability to decrease the plaque forming units (PFU) of four enveloped and two non-enveloped viruses during 1-h exposure. Statistically significant antiviral activity towards enveloped coronavirus SARS-CoV-2 and influenza virus was registered already at 20 mg Ce/l. For other two enveloped viruses, transmissible gastroenteritis virus and bacteriophage φ6, antiviral activity was evidenced at 200 mg Ce/l. As expected, the sensitivity of non-enveloped viruses towards nano-CeO2 was significantly lower. EMCV picornavirus showed no decrease in PFU until the highest tested concentration, 2000 mg Ce/l and MS2 bacteriophage showed slight non-monotonic response to high concentrations of nano-CeO2(−). Parallel testing of antiviral activity of Ce3+ ions and SiO2 nanoparticles allows to conclude that nano-CeO2 activity was neither due to released Ce-ions nor nonspecific effects of nanoparticulates. Moreover, we evidenced higher antiviral efficacy of nano-CeO2 compared with Ag nanoparticles. This result along with low antibacterial activity and non-existent cytotoxicity of nano-CeO2 allow us to propose CeO2 nanoparticles for specific antiviral applications. © 2022, The Author(s). --//-- This is an open access article Nefedova A, Rausalu K, Zusinaite E, Vanetsev A, Rosenberg M, Koppel K, Lilla S, Visnapuu M, Smits K, Kisand V, Tätte T, Ivask A., "Antiviral efficacy of cerium oxide nanoparticles", Scientific Reports (2022); 12(1):18746, doi: 10.1038/s41598-022-23465-6 published under the CC BY 4.0 licence.Estonian Research Council Grants (COVSG2, PRG629, PRG1496); Estonian Centre of Excellence in Research TK141 (2014-2020.4.01.15-0011); University of Tartu Development Fund (PLTFYARENG53); Institute of Solid-State Physics, University of Latvia has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2

    Forkhead 1 transkriptsioonifaktori iseloomustamine DNA replikatsiooni initsiatsioonil pagaripärmis Saccharomyces cerevisiae

    Get PDF
    Käesoleva töö eesmärk oli uurida seitsme deletsioonimutandi põhjal, millised Forkhead 1 transkriptsioonifaktori järjestuse piirkonnad on olulised replitseerumise ajastuse tagamisel Fkh1 poolt reguleeritavatel replikatsiooni alguspunktidel. Genoomi stabiilsuse seisukohast on replikatsiooni õige ajalise kontrolli tagamine väga oluline ning seega on vaja mõista mehhanisme, mis selle tagavad ning faktoreid, mis seda mõjutavad. Töö tulemustest selgus, et 484 aminohappe pikkusest Fkh1 kodeerivast alast pole replikatsiooni reguleerimiseks vajalikud vaid esimesed 22 aminohapet. Aminohapete 23 kuni 484 deleteerimine pärssis varajaste replikatsiooni alguspunktide aktiveerumist. Sellega kooskõlas olid ka kromatiini immunosadestamise tulemused tüves, milles deleteeriti aminohapped 410–484. Antud järjestuse deleteerimise tagajärjel polnud Fkh1 ja Cdc45 seondumine replikatsiooni alguspunktidele enam täheldatav

    Human plasma protein corona of Aβ amyloid and its impact on islet amyloid polypeptide cross-seeding

    No full text
    Alzheimer's disease (AD) is the most severe form of neurological disorder, characterized by the presence of extracellular amyloid-β (Aβ) plaques and intracellular tau tangles. For decades, therapeutic strategies against the pathological symptoms of AD have often relied on the delivery of monoclonal antibodies to target specifically Aβ amyloid or oligomers, largely to no avail. Aβ can be traced in the brain as well as in cerebrospinal fluid and the circulation, giving rise to abundant opportunities to interact with their environmental proteins. Using liquid chromatography tandem-mass spectrometry, here we identified for the first time the protein coronae of the two major amyloid forms of Aβ-Aβ1-42 and Aβ1-40-exposed to human blood plasma. Out of the proteins identified in all groups, 58 proteins were unique to the Aβ1-42 samples and 31 proteins unique to the Aβ1-40 samples. Both fibrillar coronae consisted of proteins significant in complement activation, inflammation, and protein metabolic pathways involved in the pathology of AD. Structure-wise, the coronal proteins often possessed multidomains of high flexibility to maximize their association with the amyloid fibrils. The protein corona hindered recognition of Aβ1-42 fibrils by their structurally specific antibodies and accelerated the aggregation but not the β-cell toxicity of human islet amyloid polypeptide, the peptide associated with type 2 diabetes. This study highlights the importance of understanding the structural, functional, and pathological implications of the amyloid protein corona for the development of therapeutics against AD and a range of amyloid diseases
    corecore