10 research outputs found

    Portraits, painters, patrons. To the 16–17<sup>th</sup> century history of portraiture in areas of the Hungarian kingdom

    Full text link

    On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors

    Get PDF
    On-chip energy storage and management will have transformative impacts in developing advanced electronic platforms with built-in energy needs for operation of integrated circuits driving a microprocessor. Though success in growing stand-alone energy storage elements such as electrochemical capacitors (super and pseusocapacitors) on a variety of substrates is a promising step towards this direction. In this work, on-chip energy storage is demonstrated using architectures of highly aligned vertical carbon nanotubes (CNTs) acting as supercapacitors, capable of providing large device capacitances. The efficiency of these structures is further increased by incorporating electrochemically active nanoparticles such as MnOx to form pseudocapacitive architectures thus enhancing device capacitance areal specific capacitance of 37 mF/cm2. The demonstrated on-chip integration is up and down-scalable, compatible with standard CMOS processes, and offers lightweight energy storage what is vital for portable and autonomous device operation with numerous advantages as compared to electronics built from discrete components

    Effect of particle restructuring during reduction processes over polydopamine-supported Pd nanoparticles

    No full text
    The effect of catalyst restructuring on the polydopamine-supported Pd catalyzed transfer hydrogenation of ethyl 4-nitrobenzoate and the catalytic hydrogenation of (E)-2-methyl-2-butenoic acid is reported. Transmission electron microscopy Delivered investigation by Ingenta of different catalyst pre-treatment and reaction conditions revealed high catalytic activity in both reactions unless drastic aggregation of the active metal occurred. In the transfer hydrogenation reaction aggregation was primarily depen- dent on the H-source used, while in the catalytic hydrogenation additives in combination with the reductive environment led to extensive Pd aggregation and thus decreased catalytic activity. The enantioselective hydrogenation of (E)-2-methyl-2-butenoic acid showed increased enantioselectivity and decreased conversion with increased particle size

    Size-dependent H2 sensing over supported Pt nanoparticles

    No full text
    Catalyst size affects the overall kinetics and mechanism of almost all heterogeneous chemical reactions. Since the functional sensing materials in resistive chemical sensors are practically the very same nanomaterials as the catalysts in heterogeneous chemistry, a plausible question arises: Is there any effect of the catalyst size on the sensor properties? Our study attempts to give an insight into the problem by analyzing the response and sensitivity of resistive H-2 sensors based on WO3 nanowire supported Pt nanoparticles having size of 1.5 +/- 0.4 nm, 6.2 +/- 0.8 nm, 3.7 +/- 0.5 nm and 8.3 +/- 1.3 nm. The results show that Pt nanoparticles of larger size are more active in H-2 sensing than their smaller counterparts and indicate that the detection mechanism is more complex than just considering the number of surface atoms of the catalyst

    Nanomolar Inhibitors of Glycogen Phosphorylase Based on β- D -Glucosaminyl Heterocycles: A Combined Synthetic, Enzyme Kinetic, and Protein Crystallography Study

    No full text
    Aryl substituted 1-(β-d-glucosaminyl)-1,2,3-triazoles as well as C-β-d-glucosaminyl 1,2,4-triazoles and imidazoles were synthesized and tested as inhibitors against muscle and liver isoforms of glycogen phosphorylase (GP). While the N-β-d-glucosaminyl 1,2,3-triazoles showed weak or no inhibition, the C-β-d-glucosaminyl derivatives had potent activity, and the best inhibitor was the 2-(β-d-glucosaminyl)-4(5)-(2-naphthyl)-imidazole with a Ki value of 143 nM against human liver GPa. An X-ray crystallography study of the rabbit muscle GPb inhibitor complexes revealed structural features of the strong binding and offered an explanation for the differences in inhibitory potency between glucosyl and glucosaminyl derivatives and also for the differences between imidazole and 1,2,4-triazole analogues. © 2017 American Chemical Society

    Portable cyber-physical system for indoor and outdoor gas sensing

    No full text
    Abstract A design, development and testing process for a cyber-physical system capable of versatile gas sensor measurement is described. Two approaches for the system are proposed; a stationary system for calibration and testing in laboratory environments and a portable system with wireless capability. The device utilizes a well-established Arduino microcontroller as well as a Raspberry Pi single board computer. The functionality is realized with C and Python programming languages. The operability is validated by system performance evaluation in the mixture of air and hydrogen gas, using both commercial and experimental Taguchi-type metal oxide semiconductor sensors. The experimental sensors are fabricated by inkjet printing platinum decorated tungsten oxide nanoparticles onto an electrode pattern on a silicon substrate which is then wire bonded to a chip carrier. The measurement platform demonstrated in our paper provides rapid prototyping capabilities for evaluating novel gas sensor materials in realistic measurement scenarios

    Size-dependent H₂ sensing over supported Pt nanoparticles

    No full text
    Abstract Catalyst size affects the overall kinetics and mechanism of almost all heterogeneous chemical reactions. Since the functional sensing materials in resistive chemical sensors are practically the very same nanomaterials as the catalysts in heterogeneous chemistry, a plausible question arises: Is there any effect of the catalyst size on the sensor properties? Our study attempts to give an insight into the problem by analyzing the response and sensitivity of resistive H₂ sensors based on WO₃ nanowire supported Pt nanoparticles having size of 1.5±0.4 nm, 6.2±0.8 nm, 3.7±0.5 nm and 8.3±1.3 nm. The results show that Pt nanoparticles of larger size are more active in H₂ sensing than their smaller counterparts and indicate that the detection mechanism is more complex than just considering the number of surface atoms of the catalyst
    corecore