9 research outputs found

    Tuning the Activity and Selectivity of Phenylacetylene Hydrosilylation with Triethylsilane in the Liquid Phase over Size Controlled Pt Nanoparticles

    Get PDF
    Pt nanoparticles with controlled sizes between 1.6–7.0 nm were anchored onto the surface and pores of SBA-15 silica support. The catalysts were characterized by TEM-ED, BET, XRD, and ICP-MS techniques and were tested in liquid phase hydrosilylation of phenylacetylene with triethylsilane. The activity of the 7.0 nm Pt nanoparticles anchored onto the surface of SBA-15 in hydrosilylation (TOF = 0.107 molecules·site−1·s−1) was ~2 times higher compared to the 5.0 nm Pt/SBA-15 (TOF = 0.049 molecules·site−1·s−1) catalyst and ~10 times higher compared to the 1.6 nm Pt/SBA-15 (TOF = 0.017 molecules·site−1·s−1) catalyst. Regarding the selectivity, bigger nanoparticles produced more vinylsilane-type products (α- and β-(E)-products) and less side products (mainly ditriethylsilane, triethyl(1-phenylethyl)silane and triethyl(phenethyl)silane derived likely from the reduction of the vinylsilane products). However, the selectivity towards the β-(E)-triethyl(styryl)silane was higher in the case of 1.6 nm Pt/SBA-15 catalyst compared to 5.0 nm Pt/SBA-15 and 7.0 nm Pt/SBA-15, respectively, which can be attributed to the beneficial effect of the size differences of the Pt nanoparticles as well as the differences of the quality and quantity of Pt/SiO2 interfaces

    Photoelectrochemistry by Design: Tailoring the Nanoscale Structure of Pt/NiO Composites Leads to Enhanced Photoelectrochemical Hydrogen Evolution Performance

    Get PDF
    Photoelectrochemical hydrogen evolution is a promising avenue to store the energy of sunlight in the form of chemical bonds. The recent rapid development of new synthetic approaches enables the nanoscale engineering of semiconductor photoelectrodes, thus tailoring their physicochemical properties toward efficient H<sub>2</sub> formation. In this work, we carried out the parallel optimization of the morphological features of the semiconductor light absorber (NiO) and the cocatalyst (Pt). While nanoporous NiO films were obtained by electrochemical anodization, the monodisperse Pt nanoparticles were synthesized using wet chemical methods. The Pt/NiO nanocomposites were characterized by XRD, XPS, SEM, ED, TEM, cyclic voltammetry, photovoltammetry, EIS, etc. The relative enhancement of the photocurrent was demonstrated as a function of the nanoparticle size and loading. For mass-specific surface activity the smallest nanoparticles (2.0 and 4.8 nm) showed the best performance. After deconvoluting the trivial geometrical effects (stemming from the variation of Pt particle size and thus the electroactive surface area), however, the intermediate particle sizes (4.8 and 7.2 nm) were found to be optimal. Under optimized conditions, a 20-fold increase in the photocurrent (and thus the H<sub>2</sub> evolution rates) was observed for the nanostructured Pt/NiO composite, compared to the benchmark nanoparticulate NiO film

    On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors

    Get PDF
    On-chip energy storage and management will have transformative impacts in developing advanced electronic platforms with built-in energy needs for operation of integrated circuits driving a microprocessor. Though success in growing stand-alone energy storage elements such as electrochemical capacitors (super and pseusocapacitors) on a variety of substrates is a promising step towards this direction. In this work, on-chip energy storage is demonstrated using architectures of highly aligned vertical carbon nanotubes (CNTs) acting as supercapacitors, capable of providing large device capacitances. The efficiency of these structures is further increased by incorporating electrochemically active nanoparticles such as MnOx to form pseudocapacitive architectures thus enhancing device capacitance areal specific capacitance of 37 mF/cm2. The demonstrated on-chip integration is up and down-scalable, compatible with standard CMOS processes, and offers lightweight energy storage what is vital for portable and autonomous device operation with numerous advantages as compared to electronics built from discrete components

    Portable cyber-physical system for indoor and outdoor gas sensing

    No full text
    Abstract A design, development and testing process for a cyber-physical system capable of versatile gas sensor measurement is described. Two approaches for the system are proposed; a stationary system for calibration and testing in laboratory environments and a portable system with wireless capability. The device utilizes a well-established Arduino microcontroller as well as a Raspberry Pi single board computer. The functionality is realized with C and Python programming languages. The operability is validated by system performance evaluation in the mixture of air and hydrogen gas, using both commercial and experimental Taguchi-type metal oxide semiconductor sensors. The experimental sensors are fabricated by inkjet printing platinum decorated tungsten oxide nanoparticles onto an electrode pattern on a silicon substrate which is then wire bonded to a chip carrier. The measurement platform demonstrated in our paper provides rapid prototyping capabilities for evaluating novel gas sensor materials in realistic measurement scenarios

    Size-dependent H₂ sensing over supported Pt nanoparticles

    No full text
    Abstract Catalyst size affects the overall kinetics and mechanism of almost all heterogeneous chemical reactions. Since the functional sensing materials in resistive chemical sensors are practically the very same nanomaterials as the catalysts in heterogeneous chemistry, a plausible question arises: Is there any effect of the catalyst size on the sensor properties? Our study attempts to give an insight into the problem by analyzing the response and sensitivity of resistive H₂ sensors based on WO₃ nanowire supported Pt nanoparticles having size of 1.5±0.4 nm, 6.2±0.8 nm, 3.7±0.5 nm and 8.3±1.3 nm. The results show that Pt nanoparticles of larger size are more active in H₂ sensing than their smaller counterparts and indicate that the detection mechanism is more complex than just considering the number of surface atoms of the catalyst
    corecore