12 research outputs found

    A Widespread Distribution of Genomic CeMyoD Binding Sites Revealed and Cross Validated by ChIP-Chip and ChIP-Seq Techniques

    Get PDF
    Identifying transcription factor binding sites genome-wide using chromatin immunoprecipitation (ChIP)-based technology is becoming an increasingly important tool in addressing developmental questions. However, technical problems associated with factor abundance and suitable ChIP reagents are common obstacles to these studies in many biological systems. We have used two completely different, widely applicable methods to determine by ChIP the genome-wide binding sites of the master myogenic regulatory transcription factor HLH-1 (CeMyoD) in C. elegans embryos. The two approaches, ChIP-seq and ChIP-chip, yield strongly overlapping results revealing that HLH-1 preferentially binds to promoter regions of genes enriched for E-box sequences (CANNTG), known binding sites for this well-studied class of transcription factors. HLH-1 binding sites were enriched upstream of genes known to be expressed in muscle, consistent with its role as a direct transcriptional regulator. HLH-1 binding was also detected at numerous sites unassociated with muscle gene expression, as has been previously described for its mouse homolog MyoD. These binding sites may reflect several additional functions for HLH-1, including its interactions with one or more co-factors to activate (or repress) gene expression or a role in chromatin organization distinct from direct transcriptional regulation of target genes. Our results also provide a comparison of ChIP methodologies that can overcome limitations commonly encountered in these types of studies while highlighting the complications of assigning in vivo functions to identified target sites

    Upstream stimulating factors: highly versatile stress-responsive transcription factors

    No full text
    International audienceUpstream stimulating factors (USF), USF-1 and USF-2, are members of the eucaryotic evolutionary conserved basic-Helix-Loop-Helix-Leucine Zipper transcription factor family. They interact with high affinity to cognate E-box regulatory elements (CANNTG), which are largely represented across the whole genome in eucaryotes. The ubiquitously expressed USF-transcription factors participate in distinct transcriptional processes, mediating recruitment of chromatin remodelling enzymes and interacting with co-activators and members of the transcription pre-initiation complex. Results obtained from both cell lines and knock-out mice indicates that USF factors are key regulators of a wide number of gene regulation networks, including the stress and immune responses, cell cycle and proliferation, lipid and glucid metabolism, and in melanocytes USF-1 has been implicated as a key UV-activated regulator of genes associated with pigmentation. This review will focus on general characteristics of the USF-transcription factors and their place in some regulatory networks
    corecore