41 research outputs found

    Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    Get PDF
    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as cholesterol and ubiquinone, as well as other metabolites. In humans, an age-dependent decrease in ubiquinone levels and changes in cholesterol homeostasis suggest that mevalonate pathway activity changes with age. However, our knowledge of the mechanistic basis of these changes remains rudimentary. We have identified a regulatory circuit controlling the sumoylation state of Caenorhabditis elegans HMG-CoA synthase (HMGS-1). This protein is the ortholog of human HMGCS1 enzyme, which mediates the first committed step of the mevalonate pathway. In vivo, HMGS-1 undergoes an age-dependent sumoylation that is balanced by the activity of ULP-4 small ubiquitin-like modifier protease. ULP-4 exhibits an age-regulated expression pattern and a dynamic cytoplasm-to-mitochondria translocation. Thus, spatiotemporal ULP-4 activity controls the HMGS-1 sumoylation state in a mechanism that orchestrates mevalonate pathway activity with the age of the organism. To expand the HMGS-1 regulatory network, we combined proteomic analyses with knockout studies and found that the HMGS-1 level is also governed by the ubiquitin–proteasome pathway. We propose that these conserved molecular circuits have evolved to govern the level of mevalonate pathway flux during aging, a flux whose dysregulation is associated with numerous age-dependent cardiovascular and cancer pathologies

    Atlas of Lobular Breast Cancer Models: Challenges and Strategic Directions

    Get PDF
    Invasive lobular carcinoma (ILC) accounts for up to 15% of all breast cancer (BC) cases and responds well to endocrine treatment when estrogen receptor α-positive (ER+) yet differs in many biological aspects from other ER+ BC subtypes. Up to 30% of patients with ILC will develop late-onset metastatic disease up to ten years after initial tumor diagnosis and may experience failure of systemic therapy. Unfortunately, preclinical models to study ILC progression and predict the efficacy of novel therapeutics are scarce. Here, we review the current advances in ILC modeling, including cell lines and organotypic models, genetically engineered mouse models, and patient-derived xenografts. We also underscore four critical challenges that can be addressed using ILC models: drug resistance, lobular tumor microenvironment, tumor dormancy, and metastasis. Finally, we highlight the advantages of shared experimental ILC resources and provide essential considerations from the perspective of the European Lobular Breast Cancer Consortium (ELBCC), which is devoted to better understanding and translating the molecular cues that underpin ILC to clinical diagnosis and intervention. This review will guide investigators who are considering the implementation of ILC models in their research programs

    Canonical Kaiso target genes define a functional signature that associates with breast cancer survival and the invasive lobular carcinoma histological type

    Get PDF
    Invasive lobular carcinoma (ILC) is a low- to intermediate-grade histological breast cancer type caused by mutational inactivation of E-cadherin function, resulting in the acquisition of anchorage independence (anoikis resistance). Most ILC cases express estrogen receptors, but options are limited in relapsed endocrine-refractory disease as ILC tends to be less responsive to standard chemotherapy. Moreover, ILC can relapse after >15 years, an event that currently cannot be predicted. E-cadherin inactivation leads to p120-catenin-dependent relief of the transcriptional repressor Kaiso (ZBTB33) and activation of canonical Kaiso target genes. Here, we examined whether an anchorage-independent and ILC-specific transcriptional program correlated with clinical parameters in breast cancer. Based on the presence of a canonical Kaiso-binding consensus sequence (cKBS) in the promoters of genes that are upregulated under anchorage-independent conditions, we defined an ILC-specific anoikis resistance transcriptome (ART). Converting the ART genes into human orthologs and adding published Kaiso target genes resulted in the Kaiso-specific ART (KART) 33-gene signature, used subsequently to study correlations with histological and clinical variables in primary breast cancer. Using publicly available data for ER POS Her2 NEG breast cancer, we found that expression of KART was positively associated with the histological ILC breast cancer type (p < 2.7E-07). KART expression associated with younger patients in all invasive breast cancers and smaller tumors in invasive ductal carcinoma of no special type (IDC-NST) (<2 cm, p < 6.3E-10). We observed associations with favorable long-term prognosis in both ILC (hazard ratio [HR] = 0.51, 95% CI = 0.29-0.91, p < 3.4E-02) and IDC-NST (HR = 0.79, 95% CI = 0.66-0.93, p < 1.2E-04). Our analysis thus defines a new mRNA expression signature for human breast cancer based on canonical Kaiso target genes that are upregulated in E-cadherin deficient ILC. The KART signature may enable a deeper understanding of ILC biology and etiology. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    The laminin–keratin link shields the nucleus from mechanical deformation and signalling

    Get PDF
    The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111—unlike fibronectin or collagen I—impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin ß4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that ß4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.We thank A. FarrĂ© and the other members of IMPETUX OPTICS, S.L., for their help and expertise in the design and implementation of the optical tweezers experiments; R. Sunyer for help and advice with the microprinting experiments; S. Usieto, A. MenĂ©ndez, N. Castro, M. Purciolas and W. Haaksma for providing technical support; L. Rosetti and S. Saloustros for providing data analysis tools; and J. de Rooij, A. L. Le Roux, L. Faure, A. Labernadie, R. Oria and J. Abenza, as well as all the members of the groups of P.R.-C. and X.T. for helpful discussion. Finally, we thank G. Wiche, A. Sonnenberg and N. Montserrat for providing plasmids, antibodies or cell lines used for this work. We acknowledge funding from the Spanish Ministry of Science and Innovation (PID2021-128635NB-I00 MCIN/AEI/10.13039/501100011033 and ‘ERDF-EU A way of making Europe’ to X.T., PID2019-110949GB-I00 to M.A. and PID2019-110298GB-I00 to P.R.-C.), the European Commission (H2020-FETPROACT-01-2016-731957), the European Research Council (Adv-883739 to X.T.; CoG-681434 to M.A.; StG- 851055 to A.E.-A.), the Generalitat de Catalunya (2017-SGR-1602 to X.T. and P.R.-C.; 2017-SGR-1278 to M.A. and P.S.) and European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement no. 797621 to M.G.-G. The prize ‘ICREA Academia’ for excellence in research to M.A. and P.R.-C., FundaciĂł la MaratĂł de TV3 (201936-30-31 and 201903-30-31-32), and ‘la Caixa’ Foundation (LCF/PR/HR20/52400004 and ID 100010434 under agreement LCF/PR/HR20/52400004). IBEC and CIMNE are recipients of a Severo Ochoa Award of Excellence from MINCIN. A.E.M.B. was supported by a Sir Henry Wellcome Fellowship (210887/Z/18/Z). A.E.-A. receives funding from the Francis Crick Institute, which receives its core funding from the Cancer Research UK (CC2214), the UK Medical Research Council (CC2214) and the Wellcome Trust (CC2214).Peer ReviewedPostprint (published version

    The laminin-keratin link shields the nucleus from mechanical deformation and signalling

    Get PDF
    The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin ÎČ4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that ÎČ4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.© 2023. The Author(s)

    Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment

    Get PDF
    The tumor micro-environment often contains stiff and irregular-bundled collagen fibers that are used by tumor cells to disseminate. It is still unclear how and to what extent, extracellular matrix (ECM) stiffness versus ECM bundle size and alignment dictate cancer cell invasion. Here, we have uncoupled Collagen-I bundling from stiffness by introducing inter-collagen crosslinks, combined with temperature induced aggregation of collagen bundling. Using organotypic models from mouse invasive ductal and invasive lobular breast cancers, we show that increased collagen bundling in 3D induces a generic increase in breast cancer invasion that is independent of migration mode. However, systemic collagen stiffening using advanced glycation end product (AGE) crosslinking prevents collective invasion, while leaving single cell invasion unaffected. Collective invasion into collagen matrices by ductal breast cancer cells depends on Lysyl oxidase-like 3 (Loxl3), a factor produced by tumor cells that reinforces local collagen stiffness. Finally, we present clinical evidence that collectively invading cancer cells at the invasive front of ductal breast carcinoma upregulate LOXL3. By uncoupling the mechanical, chemical, and structural cues that control invasion of breast cancer in three dimensions, our data reveal that spatial control over stiffness and bundling underlie collective dissemination of ductal-type breast cancers

    Microenvironment‐induced restoration of cohesive growth associated with focal activation of P ‐cadherin expression in lobular breast carcinoma metastatic to the colon

    Get PDF
    Invasive lobular carcinoma (ILC) is a special breast cancer type characterized by noncohesive growth and E‐cadherin loss. Focal activation of P‐cadherin expression in tumor cells that are deficient for E‐cadherin occurs in a subset of ILCs. Switching from an E‐cadherin deficient to P‐cadherin proficient status (EPS) partially restores cell–cell adhesion leading to the formation of cohesive tubular elements. It is unknown what conditions control EPS. Here, we report on EPS in ILC metastases in the large bowel. We reviewed endoscopic colon biopsies and colectomy specimens from a 52‐year‐old female (index patient) and of 18 additional patients (reference series) diagnosed with metastatic ILC in the colon. EPS was assessed by immunohistochemistry for E‐cadherin and P‐cadherin. CDH1 /E‐cadherin mutations were determined by next‐generation sequencing. The index patient's colectomy showed transmural metastatic ILC harboring a CDH1 /E‐cadherin p.Q610* mutation. ILC cells displayed different growth patterns in different anatomic layers of the colon wall. In the tunica muscularis propria and the tela submucosa, ILC cells featured noncohesive growth and were E‐cadherin‐negative and P‐cadherin‐negative. However, ILC cells invading the mucosa formed cohesive tubular elements in the intercryptal stroma of the lamina propria mucosae. Inter‐cryptal ILC cells switched to a P‐cadherin‐positive phenotype in this microenvironmental niche. In the reference series, colon mucosa infiltration was evident in 13 of 18 patients, one of which showed intercryptal EPS and conversion to cohesive growth as described in the index patient. The large bowel is a common metastatic site in ILC. In endoscopic colon biopsies, the typical noncohesive growth of ILC may be concealed by microenvironment‐induced EPS and conversion to cohesive growth

    The laminin-keratin link shields the nucleus from mechanical deformation and signalling

    Get PDF
    The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin ÎČ4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that ÎČ4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals
    corecore