16 research outputs found

    From fecal microbiota transplantation toward next-generation beneficial microbes : The case of Anaerobutyricum soehngenii

    Get PDF
    The commensal gut microbiota is important for human health and well-being whereas deviations of the gut microbiota have been associated with a multitude of diseases. Restoration of a balanced and diverse microbiota by fecal microbiota transplantation (FMT) has emerged as a potential treatment strategy and promising tool to study causality of the microbiota in disease pathogenesis. However, FMT comes with logistical challenges and potential safety risks, such as the transfer of pathogenic microorganisms, undesired phenotypes or an increased risk of developing disease later in life. Therefore, a more controlled, personalized mixture of cultured beneficial microbes might prove a better alternative. Most of these beneficial microbes will be endogenous commensals to the host without a long history of safe and beneficial use and are therefore commonly referred to as next-generation probiotics (NGP) or live biotherapeutic products (LBP). Following a previous FMT study within our group, the commensal butyrate producer Anaerobutyricum spp. (previously named Eubacterium hallii) was found to be associated with improved insulin-sensitivity in subjects with the metabolic syndrome. After the preclinical testing with Anaerobutyricum soehngenii in mice models was completed, the strain was produced under controlled conditions and several clinical studies evaluating its safety and efficacy in humans were performed. Here, we describe and reflect on the development of A. soehngenii for clinical use, providing practical guidance for the development and testing of NGPs and reflecting on the current regulatory framework.Peer reviewe

    From fecal microbiota transplantation toward next-generation beneficial microbes: The case of Anaerobutyricum soehngenii

    Get PDF
    The commensal gut microbiota is important for human health and well-being whereas deviations of the gut microbiota have been associated with a multitude of diseases. Restoration of a balanced and diverse microbiota by fecal microbiota transplantation (FMT) has emerged as a potential treatment strategy and promising tool to study causality of the microbiota in disease pathogenesis. However, FMT comes with logistical challenges and potential safety risks, such as the transfer of pathogenic microorganisms, undesired phenotypes or an increased risk of developing disease later in life. Therefore, a more controlled, personalized mixture of cultured beneficial microbes might prove a better alternative. Most of these beneficial microbes will be endogenous commensals to the host without a long history of safe and beneficial use and are therefore commonly referred to as next-generation probiotics (NGP) or live biotherapeutic products (LBP). Following a previous FMT study within our group, the commensal butyrate producer Anaerobutyricum spp. (previously named Eubacterium hallii) was found to be associated with improved insulin-sensitivity in subjects with the metabolic syndrome. After the preclinical testing with Anaerobutyricum soehngenii in mice models was completed, the strain was produced under controlled conditions and several clinical studies evaluating its safety and efficacy in humans were performed. Here, we describe and reflect on the development of A. soehngenii for clinical use, providing practical guidance for the development and testing of NGPs and reflecting on the current regulatory framework

    Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects : a randomised double-blind placebo-controlled cross-over study

    Get PDF
    Objective Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. Design In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. Results A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. Conclusions A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity.Peer reviewe

    Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition

    Get PDF
    The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.Peer reviewe

    Gut microbiota in insulin sensitivity

    No full text

    Plasma Metabolites Related to Peripheral and Hepatic Insulin Sensitivity Are Not Directly Linked to Gut Microbiota Composition

    No full text
    Plasma metabolites affect a range of metabolic functions in humans, including insulin sensitivity (IS). A subset of these plasma metabolites is modified by the gut microbiota. To identify potential microbial–metabolite pathways involved in IS, we investigated the link between plasma metabolites, gut microbiota composition, and IS, using the gold-standard for peripheral and hepatic IS measurement in a group of participants with metabolic syndrome (MetSyn). In a cross-sectional study with 115 MetSyn participants, fasting plasma samples were collected for untargeted metabolomics analysis and fecal samples for 16S rRNA gene amplicon sequencing. A two-step hyperinsulinemic euglycemic clamp was performed to assess peripheral and hepatic IS. Collected data were integrated and potential interdependence between metabolites, gut microbiota, and IS was analyzed using machine learning prediction models. Plasma metabolites explained 13.2% and 16.7% of variance in peripheral and hepatic IS, respectively. Fecal microbiota composition explained 4.2% of variance in peripheral IS and was not related to hepatic IS. Although metabolites could partially explain the variances in IS, the top metabolites related to peripheral and hepatic IS did not significantly correlate with gut microbiota composition (both on taxonomical level and alpha-diversity). However, all plasma metabolites could explain 18.5% of the variance in microbial alpha-diversity (Shannon); the top 20 metabolites could even explain 44.5% of gut microbial alpha-diversity. In conclusion, plasma metabolites could partially explain the variance in peripheral and hepatic IS; however, these metabolites were not directly linked to the gut microbiota composition, underscoring the intricate relation between plasma metabolites, the gut microbiota, and IS in MetSy

    Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk

    No full text
    Purpose of review The absolute burden of cardiovascular risk remains high despite currently available preventive and therapeutic options. In search for novel therapeutic leads, mounting evidence has linked the gut microbiota as well as their metabolites to the development of cardiometabolic diseases. Recent findings The intestinal microbiota influences the host via different metabolic pathways as inducer of endotoxemia, formation of trimethylamine-N-oxide, production of short chain fatty acids, and is a regulator in intestinal bile acid metabolism. Disruption of the gut microbiome may disturb the homeostasis of the microbial ecosystem to an alternative stable state associated with pathophysiological traits in microbiota and host. However, causality has not been shown yet. Summary We are just beginning to understand how the gut microbiota influence our cardiometabolic health and various innovative therapeutic options are in the developing (preclinical) phase. This review focuses on the current evidence whether and to what extent the intestinal microbiota are involved in cardiovascular disease and whether this is based on merely association or causal relations

    Iloprost infusion prevents the insulin-induced reduction in skeletal muscle microvascular blood volume but does not enhance peripheral glucose uptake in type 2 diabetic patients

    No full text
    Aims: In type 2 diabetes impaired insulin-induced muscle perfusion is thought to contribute to reduced whole-body glucose uptake. In this study, we examined the effects of iloprost, a stable prostacyclin analogue, on insulin-induced muscle capillary recruitment and whole-body glucose uptake. Materials and Methods: In a randomized cross-over design, 12 type 2 diabetes patients (age, 55 [46-69] years; BMI, 33.1 [31.0-39] kg/m2) underwent two hyperinsulinaemic-euglycaemic clamps, one with and one without simultaneous low-dose iloprost infusion. Contrast-enhanced ultrasonography of the vastus lateralis muscle was performed before and during the clamp. Muscle capillary recruitment was calculated as percentage change in microvascular blood volume (MBV) before and during the clamp. Results: Insulin infusion reduced skeletal muscle MBV by ~50% compared to the fasting state (fasting, 1.77·10−4 [1.54·10−5–2.44·10−3] arbitrary units (AU); hyperinsulinaemia, 6.69·10−5 [2.68·10−6–5.72·10−4] AU; P = 0.050). Infusion of iloprost prevented this insulin-induced skeletal muscle capillary derecruitment, from (−49.5 [−89.5 to 55.3] %) to (8.0 [−68.8 to 306.6] %), for conditions without and with iloprost, respectively. The rate of glucose disappearance (Rd) did not change significantly during iloprost infusion (17.3 [10.0-40.8] μmol/kg/min) compared with insulin infusion alone (17.6 [9.9-68.7] μmol/kg/min). Conclusions: Our data suggest that acute improvement in insulin-stimulated muscle perfusion is not an attractive therapeutic approach to bypass cellular resistance to glucose uptake in type 2 diabetes. Whether long-term improvements in insulin-induced muscle perfusion may prove beneficial for glucose disposal remains to be determined
    corecore