1,771 research outputs found

    Core-Core Dynamics in Spin Vortex Pairs

    Full text link
    We investigate magnetic nano-pillars, in which two thin ferromagnetic nanoparticles are separated by a nanometer thin nonmagnetic spacer and can be set into stable spin vortex-pair configurations. The 16 ground states of the vortex-pair system are characterized by parallel or antiparallel chirality and parallel or antiparallel core-core alignment. We detect and differentiate these individual vortex-pair states experimentally and analyze their dynamics analytically and numerically. Of particular interest is the limit of strong core-core coupling, which we find can dominate the spin dynamics in the system. We observe that the 0.2 GHz gyrational resonance modes of the individual vortices are replaced with 2-6 GHz range collective rotational and vibrational core-core resonances in the configurations where the cores form a bound pair. These results demonstrate new opportunities in producing and manipulating spin states on the nanoscale and may prove useful for new types of ultra-dense storage devices where the information is stored as multiple vortex-core configurations

    A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles

    Get PDF
    Colberg CA, Luo BP, Wernli H, Koop T, Peter T. A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles. ATMOSPHERIC CHEMISTRY AND PHYSICS. 2003;3(4):909-924.The physical state of the tropospheric aerosol is largely unknown despite its importance for cloud formation and for the aerosol's radiative properties. Here we use detailed microphysical laboratory measurements to perform a systematic global modelling study of the physical state of the H2SO4/NH3/H2O aerosol, which constitutes an important class of aerosols in the free troposphere. The Aerosol Physical State Model (APSM) developed here is based on Lagrangian trajectories computed from ECMWF (European Centre for Medium Range Weather Forecasts) analyses, taking full account of the deliquescence/efflorescence hysteresis. As input APSM requires three data sets: (i) deliquescence and efflorescence relative humidities from laboratory measurements, (ii) ammonia-to-sulfate ratios (ASR) calculated by a global circulation model, and (iii) relative humidities determined from the ECMWF analyses. APSM results indicate that globally averaged a significant fraction (17-57%) of the ammoniated sulfate aerosol particles contain solids with the ratio of solid-containing to purely liquid particles increasing with altitude (between 2 and 10 km). In our calculations the most abundant solid is letovicite, (NH4)(3)H(SO4)(2), while there is only little ammonium sulfate, (NH4)(2)SO4. Since ammonium bisulfate, NH4HSO4, does not nucleate homogeneously, it can only form via heterogeneous crystallization. As the ammonia-to-sulfate ratios of the atmospheric H2SO4/NH3/H2O aerosol usually do not correspond to the stoichiometries of known crystalline substances, all solids are expected to occur in mixed-phase aerosol particles. This work highlights the potential importance of letovicite, whose role as cloud condensation nucleus (CCN) and as scatterer of solar radiation remains to be scrutinized

    N-body Gravity and the Schroedinger Equation

    Get PDF
    We consider the problem of the motion of NN bodies in a self-gravitating system in two spacetime dimensions. We point out that this system can be mapped onto the quantum-mechanical problem of an N-body generalization of the problem of the H2+_{2}^{+} molecular ion in one dimension. The canonical gravitational N-body formalism can be extended to include electromagnetic charges. We derive a general algorithm for solving this problem, and show how it reduces to known results for the 2-body and 3-body systems.Comment: 15 pages, Latex, references added, typos corrected, final version that appears in CQ

    Spin accumulation and spin relaxation in a large open quantum dot

    Get PDF
    We report electronic control and measurement of an imbalance between spin-up and spin-down electrons in micron-scale open quantum dots. Spin injection and detection were achieved with quantum point contacts tuned to have spin-selective transport, with four contacts per dot for realizing a nonlocal spin-valve circuit. This provides an interesting system for studies of spintronic effects since the contacts to reservoirs can be controlled and characterized with high accuracy. We show how this can be used to extract in a single measurement the relaxation time for electron spins inside a ballistic dot (tau(sf) approximate to 300 ps) and the degree of spin polarization of the contacts (P approximate to 0.8).</p
    corecore