64 research outputs found

    Association of physical function with predialysis blood pressure in patients on hemodialysis

    Full text link
    BACKGROUND: New information from various clinical settings suggests that tight blood pressure control may not reduce mortality and may be associated with more side effects. METHODS: We performed cross-sectional multivariable ordered logistic regression to examine the association between predialysis blood pressure and the short physical performance battery (SPPB) in a cohort of 749 prevalent hemodialysis patients in the San Francisco and Atlanta areas recruited from July 2009 to August 2011 to study the relationship between systolic blood pressure and objective measures of physical function. Mean blood pressure for three hemodialysis sessions was analyzed in the following categories: <110 mmHg, 110-129 mmHg (reference), 130-159 mmHg, and ≥160 mmHg. SPPB includes three components: timed repeated chair stands, timed 15-ft walk, and balance tests. SPPB was categorized into ordinal groups (≤6, 7-9, 10-12) based on prior literature. RESULTS: Patients with blood pressure 130-159 mmHg had lower odds (OR 0.57, 95% CI 0.35-0.93) of scoring in a lower SPPB category than those whose blood pressure was between 110 and 129 mmHg, while those with blood pressure ≥160 mmHg had 0.56 times odds (95% CI 0.33-0.94) of scoring in a lower category when compared with blood pressure 110-129 mmHg. When individual components were examined, blood pressure was significantly associated with chair stand (130-159 mmHg: OR 0.59, 95% CI 0.38-0.92) and gait speed (≥160 mmHg: OR 0.59, 95% CI 0.35-0.98). Blood pressure ≥160 mmHg was not associated with substantially higher SPPB score compared with 130-159 mmHg. CONCLUSIONS: Patients with systolic blood pressure at or above 130 mmHg had better physical performance than patients with lower blood pressure in the normotensive range. The risk-benefit tradeoff of aggressive blood pressure control, particularly in low-functioning patients, should be reexamined

    The role of epigenetics in renal ageing

    Get PDF
    An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects

    Rationale and design of the Sodium Lowering In Dialysate (SoLID) trial: a randomised controlled trial of low versus standard dialysate sodium concentration during hemodialysis for regression of left ventricular mass

    Full text link
    • …
    corecore