30 research outputs found

    A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).</p> <p>Results</p> <p>Using a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.</p> <p>Conclusion</p> <p>These results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.</p

    Two families with sibling recurrence of the 17q21.31 microdeletion syndrome due to low-grade mosaicism

    No full text
    Item does not contain fulltextThe 17q21.31 microdeletion syndrome is characterised by intellectual disability, epilepsy, distinctive facial dysmorphism, and congenital anomalies. To date, all individuals reported with this syndrome have been simplex patients, resulting from de novo deletions. Here, we report sibling recurrence of the 17q21.31 microdeletion syndrome in two independent families. In both families, the mother was confirmed to be the parent-of-origin for the 17q21.31 deletion. Fluorescence in situ hybridisation analyses in buccal mucosa cells, of the mother of family 1, identified monosomy 17q21.31 in 4/50 nuclei (8%). In mother of family 2, the deletion was identified in 2/60 (3%) metaphase and in 3/100 (3%) interphase nuclei in peripheral lymphocytes, and in 7/100 (7%) interphase nuclei in buccal cells. A common 17q21.31 inversion polymorphism predisposes to non-allelic homologous recombination and hereby to the 17q21.31 microdeletion syndrome. On the basis of the 17q21.31 inversion status of the parents, we calculated that the probability of the second deletion occurring by chance alone was 1/14,438 and 1/4812, respectively. If the inversion status of the parents of a child with the 17q21.31 microdeletion syndrome is unknown, the overall risk of a second child with the 17q21.31 microdeletion is 1/9461. We conclude that the presence of low-level maternal somatic-gonadal mosaicism is associated with the microdeletion recurrence in these families. This suggests that the recurrence risk for parents with a child with a 17q21.31 microdeletion for future pregnancies is higher than by chance alone and testing for mosaicism in the parents might be considered as a helpful tool in the genetic counselling.01 juli 201

    Identification of non-recurrent submicroscopic genome imbalances: the advantage of genome-wide microarrays over targeted approaches

    Full text link
    Genome-wide analysis of DNA copy-number changes using microarray-based technologies has enabled the detection of de novo cryptic chromosome imbalances in approximately 10% of individuals with mental retardation. So far, the majority of these submicroscopic microdeletions/duplications appear to be unique, hampering clinical interpretation and genetic counselling. We hypothesised that the genomic regions involved in these de novo submicroscopic aberrations would be candidates for recurrent copy-number changes in individuals with mental retardation. To test this hypothesis, we used multiplex ligation-dependent probe amplification (MLPA) to screen for copy number changes at eight genomic candidate regions in a European cohort of 710 individuals with idiopathic mental retardation. By doing so, we failed to detect additional submicroscopic rearrangements, indicating that the anomalies tested are non-recurrent in this cohort of patients. The break points flanking the candidate regions did not contain low copy repeats and/or sequence similarities, thus providing an explanation for its non-recurrent nature. On the basis of these data, we propose that the use of genome-wide microarrays is indicated when testing for copy-number changes in individuals with idiopathic mental retardation

    Evaluation of PRDM9 variation as a risk factor for recurrent genomic disorders and chromosomal non-disjunction

    No full text
    Recent studies have identified PRDM9, a zinc finger (ZF) protein, as a key regulator of meiotic recombination. As both recurrent genomic disorders and chromosomal non-disjunction are known to be associated with specific unusual patterns of recombination, we hypothesized a possible link between PRDM9 ZF variation and susceptibility to microdeletion syndromes and/or trisomy. We sequenced the PRDM9 ZF domain in 271 parents of patients with de novo microdeletions of known parental origin (velocardiofacial syndrome, the 17q21.31 microdeletion syndrome, Prader-Willi/Angelman syndrome and Williams-Beuren syndrome), and in 61 parents of individuals with a supernumerary X chromosome. We compared PRDM9 ZF genotype frequencies between parents in whose germ line the de novo rearrangement occurred and their spouses. We observed a significantly increased frequency (p = 0.006) of PRDM9 variants in parents who transmitted de novo 7q11.23 deletions to their offspring. These data suggest that certain PRDM9 alleles may be associated with an increased susceptibility to recurrent 7q11.23 microdeletions that cause Williams-Beuren syndrome. However, as the majority of parents who transmitted a de novo microdeletion/supernumerary X chromosome to their offspring have the common AA genotype, we conclude that none of the rearrangements we have studied are dependent on specific non-A PRDM9 alleles

    Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome.

    No full text
    Item does not contain fulltextWe show that haploinsufficiency of KANSL1 is sufficient to cause the 17q21.31 microdeletion syndrome, a multisystem disorder characterized by intellectual disability, hypotonia and distinctive facial features. The KANSL1 protein is an evolutionarily conserved regulator of the chromatin modifier KAT8, which influences gene expression through histone H4 lysine 16 (H4K16) acetylation. RNA sequencing studies in cell lines derived from affected individuals and the presence of learning deficits in Drosophila melanogaster mutants suggest a role for KANSL1 in neuronal processes.01 juni 201

    Holoprosencephaly and preaxial polydactyly associated with a 1.24 Mb duplication encompassing FBXW11 at 5q35.1.

    No full text
    Contains fulltext : 49876.pdf (publisher's version ) (Closed access)Holoprosencephaly (HPE) is the most common developmental defect affecting the forebrain and midface in humans. The aetiology of HPE is highly heterogeneous and includes both environmental and genetic factors. Here we report on a boy with mild mental retardation, lobar HPE, epilepsy, mild pyramidal syndrome of the legs, ventricular septal defect, vesicoureteral reflux, preaxial polydactyly, and facial dysmorphisms. Genome-wide tiling path resolution array based comparative genomic hybridisation (array CGH) revealed a de novo copy-number gain at 5q35.1 of 1.24 Mb. Additional multiplex ligation-dependent probe amplification screening of a cohort of 31 patients with HPE for copy-number changes at the 5q35.1 locus did not reveal any additional genomic anomalies. This report defines a novel 1.24 Mb critical interval for HPE and preaxial polydactyly at 5q35.1. The duplicated region encompasses seven genes: RANBP17, TLX3, NPM1, FGF18, FBXW11, STK10, and DC-UbP. Since FBXW11 is relatively highly expressed in fetal brain and is directly involved in proteolytic processing of GLI3, we propose FBXW11 as the most likely candidate gene for the HPE and prexial polydactyly phenotype. Additional research is needed to further establish the role of genes from the 5q35.1 region in brain and limb development and to determine the prevalence of copy number gain in the 5q35.1 region among HPE patients

    The Koolen-de Vries syndrome : A phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant

    Get PDF
    The Koolen-de Vries syndrome (KdVS; OMIM #610443), also known as the 17q21.31 microdeletion syndrome, is a clinically heterogeneous disorder characterised by (neonatal) hypotonia, developmental delay, moderate intellectual disability, and characteristic facial dysmorphism. Expressive language development is particularly impaired compared with receptive language or motor skills. Other frequently reported features include social and friendly behaviour, epilepsy, musculoskeletal anomalies, congenital heart defects, urogenital malformations, and ectodermal anomalies. The syndrome is caused by a truncating variant in the KAT8 regulatory NSL complex unit 1 (KANSL1) gene or by a 17q21.31 microdeletion encompassing KANSL1. Herein we describe a novel cohort of 45 individuals with KdVS of whom 33 have a 17q21.31 microdeletion and 12 a single-nucleotide variant (SNV) in KANSL1 (19 males, 26 females; age range 7 months to 50 years). We provide guidance about the potential pitfalls in the laboratory testing and emphasise the challenges of KANSL1 variant calling and DNA copy number analysis in the complex 17q21.31 region. Moreover, we present detailed phenotypic information, including neuropsychological features, that contribute to the broad phenotypic spectrum of the syndrome. Comparison of the phenotype of both the microdeletion and SNV patients does not show differences of clinical importance, stressing that haploinsufficiency of KANSL1 is sufficient to cause the full KdVS phenotype
    corecore