82 research outputs found

    Vitamin G: effects of green space on health, well-being, and social safety

    Get PDF
    BACKGROUND: Looking out on and being in the green elements of the landscape around us seem to affect health, well-being and feelings of social safety. This article discusses the design of a research program on the effects of green space in the living environment on health, well-being and social safety. METHODS/DESIGN: The program consists of three projects at three different scales: at a macro scale using data on the Netherlands as a whole, at an intermediate scale looking into the specific effect of green space in the urban environment, and at micro scale investigating the effects of allotment gardens. The projects are observational studies, combining existing data on land use and health interview survey data, and collecting new data through questionnaires and interviews. Multilevel analysis and GIS techniques will be used to analyze the data. DISCUSSION: Previous (experimental) research in environmental psychology has shown that a natural environment has a positive effect on well-being through restoration of stress and attentional fatigue. Descriptive epidemiological research has shown a positive relationship between the amount of green space in the living environment and physical and mental health and longevity. The program has three aims. First, to document the relationship between the amount and type of green space in people's living environment and their health, well-being, and feelings of safety. Second, to investigate the mechanisms behind this relationship. Mechanisms relate to exposure (leading to stress reduction and attention restoration), healthy behavior and social integration, and selection. Third, to translate the results into policy on the crossroads of spatial planning, public health, and safety. Strong points of our program are: we study several interrelated dependent variables, in different ordinary settings (as opposed to experimental or extreme settings), focusing on different target groups, using appropriate multilevel methods

    Facilitating Knowledge Visualisation as Communication and Knowledge Transfer Mechanism in Postgraduate Learning

    Get PDF
    Advances in technology and subsequent access to inexpensive software have made visualisation, as a method of knowledge creation and transfer, more accessible. Visualisations have been used to support knowledge representation and transfer in teaching but the focus has primarily been on creating visualisations for learner consumption. The idea of students becoming active participants in producing visualisations, as part of knowledge creation and learning, has largely been overlooked. The study reported here investigated the use of visualisation for summarising knowledge at postgraduate level. The student’s need to assimilate and organise knowledge is an important part of their learning. We suggest that it would be useful for students to learn how to produce knowledge visualisations as part of this activity. The production is an act of knowledge creation, which can improve their comprehension of the research literature. Producing visualisations is not necessarily straightforward and it is therefore advisable to scaffold the process. We propose a faded-struts learning process that gradually removes scaffolding as the learner masters the principles and becomes more adept. The contribution of this research is to present the idea of providing worked examples and faded examples to support postgraduate learning. This helps postgraduates to craft knowledge visualisations so that they can slowly become more proficient and independent. Due to the ubiquity of mobile devices we propose providing this support on these devices, incorporating their unique constraints and affordances in our learning process. This is essentially a proof of concept paper, suggesting how the idea could be realised. Further work is necessary to test the idea with students and to extend the repertoire of mobile learning (m-learning) visualisation tasks.College of Engineering, Science and Technolog

    Small-Animal PET Imaging of Amyloid-Beta Plaques with [11C]PiB and Its Multi-Modal Validation in an APP/PS1 Mouse Model of Alzheimer's Disease

    Get PDF
    In vivo imaging and quantification of amyloid-β plaque (Aβ) burden in small-animal models of Alzheimer's disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [11C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [11C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [11C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice

    The Embodied and Situated Nature of Moods

    Get PDF
    This is the final version of the article. Available from Springer via the DOI in this record.In this paper I argue that it is misleading to regard the brain as the physical basis or “core machinery” of moods. First, empirical evidence shows that brain activity not only influences, but is in turn influenced by, physical activity taking place in other parts of the organism (such as the endocrine and immune systems). It is therefore not clear why the core machinery of moods ought to be restricted to the brain. I propose, instead, that moods should be conceived as embodied, i.e., their physical basis should be enlarged so as to comprise not just brain but also bodily processes. Second, I emphasise that moods are also situated in the world. By this I do not simply mean that moods are influenced by the world, but that they are complexly interrelated with it, in at least three different ways: they are shaped by cultural values and norms; they are materially and intersubjectively “scaffolded”; and they can even “experientially incorporate” parts of the world, i.e., include the experience of parts of the world as part of oneself

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF
    corecore