7,036 research outputs found

    Magnetic Properties of the Novel Low-Dimensional Cuprate Na5RbCu4(AsO4)4Cl2

    Full text link
    The magnetic properties of a new compound, Na5RbCu4(AsO4)4Cl2 are reported. The material has a layered structure comprised of square Cu4O4 tetramers. The Cu ions are divalent and the system behaves as a low-dimensional S=1/2 antiferromagnet. Spin exchange in Na5RbCu4(AsO4)4Cl2 appears to be quasi-two-dimensional and non-frustrated. Measurements of the bulk magnetic susceptibility and heat capacity are consistent with low-dimensional magnetism. The compound has an interesting, low-entropy, magnetic transition at T = 17 K.Comment: 4 pages, 5 figure

    Molecular Gas during the Post-Starburst Phase: Low Gas Fractions in Green Valley Seyfert Post-Starburst Galaxies

    Full text link
    Post-starbursts (PSBs) are candidate for rapidly transitioning from star-bursting to quiescent galaxies. We study the molecular gas evolution of PSBs at z ~ 0.03 - 0.2. We undertook new CO (2-1) observations of 22 Seyfert PSBs candidates using the ARO Submillimeter Telescope. This sample complements previous samples of PSBs by including green valley PSBs with Seyfert-like emission, allowing us to analyze for the first time the molecular gas properties of 116 PSBs with a variety of AGN properties. The distribution of molecular gas to stellar mass fractions in PSBs is significantly different than normal star-forming galaxies in the COLD GASS survey. The combined samples of PSBs with Seyfert-like emission line ratios have a gas fraction distribution which is even more significantly different and is broader (~ 0.03-0.3). Most of them have lower gas fractions than normal star-forming galaxies. We find a highly significant correlation between the WISE 12 micron to 4.6 micron flux ratios and molecular gas fractions in both PSBs and normal galaxies. We detect molecular gas in 27% of our Seyfert PSBs. Taking into account the upper limits, the mean and the dispersion of the distribution of the gas fraction in our Seyfert PSB sample are much smaller (mean = 0.025, std dev. = 0.018) than previous samples of Seyfert PSBs or PSBs in general (mean ~ 0.1 - 0.2, std dev. ~ 0.1 - 0.2).Comment: 17 pages, 12 figures accepted in MNRA

    Time Synchronisation for Wireless Sensors using Low-cost GPS module and Arduino (article)

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordThe dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.1063Time synchronisation for wireless sensors is important for a proper interpretation of measurements, particularly for acceleration measurements to estimate mode-shapes correctly. This paper presents a new time synchronisation method working independently on each node without exchanging time-sync packets among nodes. This stand-along operation can make field measurement campaigns very time-efficient without a need of constructing and validating the wireless sensor network. The proposed method firstly time-stamps measurements using the accurate time-source from a GPS module on each node, and secondly re-samples the time-stamped data to get time-synchronised data. The time-stamping method proposed in the study utilises Pulse-Per-Second (PPS) signals and NMEA (National Marine Electronics Association) sentences generated by a low-cost GPS module, and the internal timer/counter unit of Arduino. Error analysis on the proposed time-stamping method was carried out and derived an analytical expression for the maximum variance of time-stamping error of the proposed method. Four experiments have been carried out to observe 1) the long-term operational stability of the GPS module, 2) the accuracy of the PPS signals, 3) the accuracy of the proposed time-stamping method, and 4) the validity of the proposed time-synchronisation method for output-only modal analysis on a laboratory floor structure. The GPS module was found to operate or to resume operating stably for the entire test period of seven days even with the limited field of view to the sky. The relative time errors of two PPS signals from four GPS modules were found to be within +/-400 nsec. The time-stamping error measured by two identical time-stamping Arduinos for common trigger signals was found to have a standard deviation of 40.8 nsec, which agreed well with the maximum value of 42.0 nsec predicted by the error analysis. From the output-only modal analysis, the estimated modal parameters were found to agree well with that from the wired acceleration sensors. The phase angle of the cross spectral density of the two wireless accelerations showed that there was no apparent time-synchronisation error observable. These observations indicated a successful operation of the proposed time-synchronisation method

    Electromagnetic Hysteretic Response Calculation for Superconductors in Demagnetizing Geometries

    Get PDF
    The electromagnetic response of the new high Tc superconductors is similar to that of eddy currents in normal metals, except that in the superconductor induced currents are established nonlinearly at a single value known as the critical current density, J c . These materials are extreme Type II superconductors where, in the presence of an external magnetic field and/or a transport current, magnetic flux exists in the material in the form of flux lines distributed on a lattice [1]. Individual flux lines become pinned at microstructural inhomogeneities such that only under a sufficient force caused by locally high current flows will they become depinned and flow throughout the material. The value of the local current density that causes depinning is the microscopic critical current density and is directly proportional to the pinning force strength. A phenomenological approach known as the critical state model [2,3] describes the pinned flux line distribution within the material quasistatically, assuming the equilibrium distribution is achieved at each value of the externally applied field on a short time scale compared to experimental times. Operationally, whenever an external field is increased, flux lines enter the material from the surface and penetrate to a flux front boundary, whose position is determined by the value of the external field at the sample surface. An important nondestructive evaluation (NDE) task to aid the fabrication of high Tc superconductors is to develop methods for quantitatively determining the local current density. In the critical state the current density is either the critical value appropriate to the local value of the induction J c , or it is zero. The electromagnetic response of the material is then determined by the extent of this critical state region and its measurement can be used to determine the local J c . Therefore, a method that can predict the flux front profile with high spatial resolution, and also account for demagnetization effects, is essential. An integral equation technique dealing with a nonuniform applied magnetic field having azimuthal symmetry was presented at the last QNDE conference by the present authors [4]. The current paper shows results from the further development of this technique in two ways. Firstly, the superconducting sample is extended from a half-space to an infinite plate. This is an example of a nonuniform applied magnetic field having azimuthal symmetry. The second application is a sphere, that is a demagnetizing geometry, in a uniform applied magnetic field. In the following section, the general methodology of this technique is outlined. Then some results of both the plate and the sphere examples are given to illustrate this proposed approach. Since the study of the plate sample is still in progress, more results will be reported in future publications. For the sphere sample, detailed discussion and presentation of formulations are given in [5]

    Superclustering at Redshift Z=0.54

    Get PDF
    We present strong evidence for the existence of a supercluster at a redshift of z=0.54 in the direction of Selected Area 68. From the distribution of galaxies with spectroscopic redshifts we find that there is a large over-density of galaxies (a factor of four over the number expected in an unclustered universe) within the redshift range 0.530 < z < 0.555. By considering the spatial distribution of galaxies within this redshift range (using spectroscopic and photometric redshifts) we show that the galaxies in SA68 form a linear structure passing from the South-West of the survey field through to the North-East (with a position angle of approximately 35 deg East of North). This position angle is coincident with the positions of the X-ray clusters CL0016+16, RX J0018.3+1618 and a new X-ray cluster, RX J0018.8+1602, centered near the radio source 54W084. All three of these sources are at a redshift of approximately z=0.54 and have position angles, derived from their X-ray photon distributions, consistent with that measured for the supercluster. Assuming a redshift of 0.54 for the distribution of galaxies and a FWHM dispersion in redshift of 0.020 this represents a coherent structure with a radial extent of 31 Mpc, transverse dimension of 12 Mpc, and a thickness of approximately 4 Mpc. The detection of this possible supercluster demonstrates the power of using X-ray observations, combined with multicolor observations, to map the large scale distribution of galaxies at intermediate redshifts.Comment: 12 pages, 3 figures, Latex, aaspp4.sty, accepted for publication in Ap J Letters. Figure 3 and followup observations can be found at http://tarkus.pha.jhu.edu/~ajc/papers/supercluster
    • …
    corecore