8,737 research outputs found

    A spin quantum bit with ferromagnetic contacts for circuit QED

    Full text link
    We theoretically propose a scheme for a spin quantum bit based on a double quantum dot contacted to ferromagnetic elements. Interface exchange effects enable an all electric manipulation of the spin and a switchable strong coupling to a superconducting coplanar waveguide cavity. Our setup does not rely on any specific band structure and can in principle be realized with many different types of nanoconductors. This allows to envision on-chip single spin manipulation and read-out using cavity QED techniques

    Mass Extinction in Progress

    Get PDF

    Mesoscopic admittance of a double quantum dot

    Full text link
    We calculate the mesoscopic admittance G(ω)G(\omega) of a double quantum dot (DQD),which can be measured directly using microwave techniques. This quantity reveals spectroscopic information on the DQD and is also directly sensitive to a Pauli spin blockade effect. We then discuss the problem of a DQD coupled to a high quality photonic resonator. When the photon correlation functions can be developed along a random-phase-approximation-like scheme, the response of the resonator gives an access to G(ω)G(\omega)

    The inter-relation between policy and practice for transitions from hospital to home: An ethnographic case study in England’s National Health Service

    Get PDF
    © 2014 Shaw et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.No abstract available (poster presentation)

    Direct cavity detection of Majorana pairs

    Full text link
    No experiment could directly test the particle/antiparticle duality of Majorana fermions, so far. However, this property represents a necessary ingredient towards the realization of topological quantum computing schemes. Here, we show how to complete this task by using microwave techniques. The direct coupling between a pair of overlapping Majorana bound states and the electric field from a microwave cavity is extremely difficult to detect due to the self-adjoint character of Majorana fermions which forbids direct energy exchanges with the cavity. We show theoretically how this problem can be circumvented by using photo-assisted tunneling to fermionic reservoirs. The absence of direct microwave transition inside the Majorana pair in spite of the light-Majorana coupling would represent a smoking gun for the Majorana self-adjoint character.Comment: 6 pages, 4 figure

    0-pi oscillations in nanostructured Nb/Fe/Nb Josephson junctions

    Full text link
    The physics of the π\pi phase shift in ferromagnetic Josephson junctions may enable a range of applications for spin-electronic devices and quantum computing. We investigate transitions from ``0'' to ``π\pi'' states in Nb/Fe/Nb Josephson junctions by varying the Fe barrier thickness from 0.5 nm to 5.5 nm. From magnetic measurements we estimate for Fe a magnetic dead layer of about 1.1 nm. By fitting the characteristic voltage oscillations with existing theoretical models we extrapolate an exchange energy of 256 meV, a Fermi velocity of 1.98×1051.98 \times 10^5 m/s and an electron mean free path of 6.2 nm, in agreement with other reported values. From the temperature dependence of the ICRNI_CR_N product we show that its decay rate exhibits a nonmonotonic oscillatory behavior with the Fe barrier thickness.Comment: 7 pages, 5 figures, accepted for publication in Eur. Phys. J.

    Kondo resonance in a nanotube quantum dot coupled to a normal and a superconducting lead

    Full text link
    We report on electrical transport measurements through a carbon nanotube quantum dot coupled to a normal and a superconducting lead. The ratio of Kondo temperature and superconducting gap TK/ΔT_{K}/\Delta is identified to govern the transport properties of the system. In the case of TK<ΔT_{K}<\Delta the conductance resonance splits into two resonances at ±Δ\pm \Delta. For the opposite scenario TK>ΔT_{K}>\Delta the conductance resonance persists, however the conductance is not enhanced compared to the normal state due to a relative asymmetry of the lead-dot couplings. Within this limit the data is in agreement with a simple model of a resonant SN-interface.Comment: 4 pages, 2 figures. submitted to the Proc. Rencontres de Moriond on Quantum Information and Decoherence in Nanosystems 200

    Subradiant split Cooper pairs

    Full text link
    We suggest a way to characterize the coherence of the split Cooper pairs emitted by a double-quantum-dot based Cooper pair splitter (CPS), by studying the radiative response of such a CPS inside a microwave cavity. The coherence of the split pairs manifests in a strongly nonmonotonic variation of the emitted radiation as a function of the parameters controlling the coupling of the CPS to the cavity. The idea to probe the coherence of the electronic states using the tools of Cavity Quantum Electrodynamics could be generalized to many other nanoscale circuits.Comment: Main text + Supplemental material file (15 pages, 5 figures), to appear in Physical Review Letter

    On the Kondo effect in carbon nanotubes at half halfing

    Get PDF
    In a single state of a quantum dot the Kondo effect arises due to the spin-degeneracy, which is present if the dot is occupied with one electron (N = 1). The eigenstates of a carbon nanotube quantum dot possess an additional orbital degeneracy leading to a four-fold shell pattern. This additional degeneracy increases the possibility for the Kondo effect to appear. We revisit the Kondo problem in metallic carbon nanotubes by linear and non-linear transport measurement in this regime, in which the four-fold pattern is present. We have analyzed the ground state of CNTs, which were grown by chemical vapor deposition, at filling N = 1, N = 2, and N = 3. Of particular interest is the half-filled shell, i.e. N = 2. In this case, the ground state is either a paired electron state or a state for which the singlet and triplet states are effectively degenerate, allowing in the latter case for the appearance of the Kondo effect. We deduce numbers for the effective missmatch d of the levels from perfect degeneracy and the exchange energy J. While d ~ 0.1 - 0.2 (in units of level spacing) is in agreement with previous work, the exchange term is found to be surprisingly small: J < 0.02. In addition we report on the observation of gaps, which in one case is seen at N = 3 and in another is present over an extended sequence of levels.Comment: full paper including figures at: http://www.unibas.ch/phys-meso/Research/Papers/2004/Kondo-4shell-SWNT.pd
    corecore