624 research outputs found

    Problems and Progress in Flare Fast Particle Diagnostics

    Full text link
    Recent progress in the diagnosis of flare fast particles is critically discussed with the main emphasis on high resolution Hard X-Ray (HXR) data from RHESSI and coordinated data from other instruments. Spectacular new photon data findings are highlighted as are advances in theoretical aspects of their use as fast particle diagnostics, and some important comparisons made with interplanetary particle data. More specifically the following topics are addressed (a) RHESSI data on HXR (electron) versus gamma-ray line (ion) source locations. (b) RHESSI hard X-ray source spatial structure in relation to theoretical models and loop density structure. (c) Energy budget of flare electrons and the Neupert effect. (d) Spectral deconvolution methods including blind target testing and results for RHESSI HXR spectra, including the reality and implications of dips inferred in electron spectra (e) The relation between flare in-situ and interplanetary particle data.Comment: 15 pages, 13 figures, submitted to Advances in Space Researc

    The influence of albedo on the size of hard X-ray flare sources

    Full text link
    Context: Hard X-rays from solar flares are an important diagnostic of particle acceleration and transport in the solar atmosphere. Any observed X-ray flux from on-disc sources is composed of direct emission plus Compton backscattered photons (albedo). This affects both the observed spectra and images as well as the physical quantities derived from them such as the spatial and spectral distributions of accelerated electrons or characteristics of the solar atmosphere. Aims: We propose a new indirect method to measure albedo and to infer the directivity of X-rays in imaging using RHESSI data. Methods: Visibility forward fitting is used to determine the size of a disc event observed by RHESSI as a function of energy. This is compared to the sizes of simulated sources from a Monte Carlo simulation code of photon transport in the chromosphere for different degrees of downward directivity and true source sizes to find limits on the true source size and the directivity. Results: The observed full width half maximum of the source varies in size between 7.4 arcsec and 9.1 arcsec with the maximum between 30 and 40 keV. Such behaviour is expected in the presence of albedo and is found in the simulations. A source size smaller than 6 arcsec is improbable for modest directivities and the true source size is likely to be around 7 arcsec for small directivities. Conclusions: While it is difficult to image the albedo patch directly, the effect of backscattered photons on the observed source size can be estimated. The increase in source size caused by albedo has to be accounted for when computing physical quantities that include the size as a parameter such as flare energetics. At the same time, the study of the albedo signature provides vital information about the directivity of X-rays and related electrons.Comment: 8 pages, 6 figures, A&A (accepted

    Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes

    Full text link
    We present a non-parametric prognostic framework for individualized event prediction based on joint modeling of both longitudinal and time-to-event data. Our approach exploits a multivariate Gaussian convolution process (MGCP) to model the evolution of longitudinal signals and a Cox model to map time-to-event data with longitudinal data modeled through the MGCP. Taking advantage of the unique structure imposed by convolved processes, we provide a variational inference framework to simultaneously estimate parameters in the joint MGCP-Cox model. This significantly reduces computational complexity and safeguards against model overfitting. Experiments on synthetic and real world data show that the proposed framework outperforms state-of-the art approaches built on two-stage inference and strong parametric assumptions

    Spatially-resolved Energetic Electron Properties for the 21 May 2004 Flare from Radio Observations and 3D Simulations

    Get PDF
    We investigate in detail the 21 May 2004 flare using simultaneous observations of the Nobeyama Radioheliograph, Nobeyama Radiopolarimeters, Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Solar and Heliospheric Observatory (SOHO). The flare images in different spectral ranges reveal the presence of a well-defined single flaring loop in this event. We have simulated the gyrosynchrotron microwave emission using the recently developed interactive IDL tool GX Simulator. By comparing the simulation results with the observations, we have deduced the spatial and spectral properties of the non-thermal electron distribution. The microwave emission has been found to be produced by the high-energy electrons (>100>100 keV) with a relatively hard spectrum (δ2\delta\simeq 2); the electrons were strongly concentrated near the loop top. At the same time, the number of high-energy electrons near the footpoints was too low to be detected in the RHESSI images and spatially unresolved data. The SOHO Extreme-ultraviolet Imaging Telescope images and the low-frequency microwave spectra suggest the presence of an extended "envelope" of the loop with lower magnetic field. Most likely, the energetic electron distribution in the considered flare reflects the localized (near the loop top) particle acceleration (injection) process accompanied by trapping and scattering.Comment: Accepted for publication in Solar Physic

    Fast spectral fitting of hard X-ray bremsstrahlung from truncated power-law electron spectra

    Get PDF
    <p><b>Context:</b> Hard X-ray bremsstrahlung continuum spectra, such as from solar flares, are commonly described in terms of power-law fits, either to the photon spectra themselves or to the electron spectra responsible for them. In applications various approximate relations between electron and photon spectral indices are often used for energies both above and below electron low-energy cutoffs.</p> <p><b>Aims:</b> We examine the form of the exact relationships in various situations, and for various cross-sections, showing that empirical relations sometimes used can be highly misleading especially at energies below the low-energy cutoff, and consider how to improve fitting procedures.</p> <p><b>Methods:</b> We obtain expressions for photon spectra from single, double and truncated power-law electron spectra for a variety of cross-sections and for the thin and thick target models and simple analytic expressions for the non-relativistic Bethe-Heitler case.</p> <p><b>Results:</b> We show that below the low-energy cutoff Kramers and other constant spectral index forms commonly used are very poor approximations to accurate results, but that our analytical forms are a good match; and that above a low-energy cutoff, the Kramers and non-relativistic Bethe-Heitler results match reasonably well with results for up to energies around 100 keV.</p> <p><b>Conclusions:</b> Analytical forms of the non-relativistic Bethe-Heitler photon spectra from general power-law electron spectra are good match to exact results for both thin and thick targets and they enable much faster spectral fitting than evaluation of the full spectral integrations.</p&gt

    Parallel electric field amplification by phase-mixing of Alfven waves

    Full text link
    Previous numerical studies have identified "phase mixing" of low-frequency Alfven waves as a mean of parallel electric field amplification and acceleration of electrons in a collisionless plasma. Theoretical explanations are given of how this produces an amplification of the parallel electric field, and as a consequence, also leads to enhanced collisionless damping of the wave by energy transfer to the electrons. Our results are based on the properties of the Alfven waves in a warm plasma which are obtained from drift-kinetic theory, in particular, the rate of their electron Landau damping. Phase mixing in a collisionless low-β\beta plasma proceeds in a manner very similar to the visco-resistive case, except for the fact that electron Landau damping is the primary energy dissipation channel. The time and length scales involved are evaluated. We also focus on the evolution of the parallel electric field and calculate its maximum value in the course of its amplification

    Dynamics of electron beams in the solar corona plasma with density fluctuations

    Get PDF
    The problem of beam propagation in a plasma with small scale and low intensity inhomogeneities is investigated. It is shown that the electron beam propagates in a plasma as a beam-plasma structure and is a source of Langmuir waves. The plasma inhomogeneity changes the spatial distribution of the waves. The spatial distribution of the waves is fully determined by the distribution of plasma inhomogeneities. The possible applications to the theory of radio emission associated with electron beams are discussed

    Hard X-ray footpoint sizes and positions as diagnostics of flare accelerated energetic electrons in the low solar atmosphere

    Full text link
    The hard X-ray (HXR) emission in solar flares comes almost exclusively from a very small part of the flaring region, the footpoints of magnetic loops. Using RHESSI observations of solar flare footpoints, we determine the radial positions and sizes of footpoints as a function of energy in six near-limb events to investigate the transport of flare accelerated electrons and the properties of the chromosphere. HXR visibility forward fitting allows to find the positions/heights and the sizes of HXR footpoints along and perpendicular to the magnetic field of the flaring loop at different energies in the HXR range. We show that in half of the analyzed events, a clear trend of decreasing height of the sources with energy is found. Assuming collisional thick-target transport, HXR sources are located between 600 and 1200 km above the photosphere for photon energies between 120 and 25 keV respectively. In the other events, the position as a function of energy is constant within the uncertainties. The vertical sizes (along the path of electron propagation) range from 1.3 to 8 arcseconds which is up to a factor 4 larger than predicted by the thick-target model even in events where the positions/heights of HXR sources are consistent with the collisional thick-target model. Magnetic mirroring, collisional pitch angle scattering and X-ray albedo are discussed as potential explanations of the findings.Comment: 10 pages, 8 figures, accepted for publication in Ap

    RHESSI and SDO/AIA observations of the chromospheric and coronal plasma parameters during a solar flare

    Full text link
    X-ray and EUV observations are an important diagnostic of various plasma parameters of the solar atmosphere during solar flares. Soft X-ray and EUV observations often show coronal sources near the top of flaring loops, while hard X-ray emission is mostly observed from chromospheric footpoints. Combining RHESSI with simultaneous SDO/AIA observations, it is possible for the first time to determine the density, temperature, and emission profile of the solar atmosphere over a wide range of heights during a flare, using two independent methods. Here we analyze a near limb event during the first of three hard X-ray peaks. The emission measure, temperature, and density of the coronal source is found using soft X-ray RHESSI images while the chromospheric density is determined using RHESSI visibility analysis of the hard X-ray footpoints. A regularized inversion technique is applied to AIA images of the flare to find the differential emission measure (DEM). Using DEM maps we determine the emission and temperature structure of the loop, as well as the density, and compare it with RHESSI results. The soft X-ray and hard X-ray sources are spatially coincident with the top and bottom of the EUV loop, but the bulk of the EUV emission originates from a region without co-spatial RHESSI emission. The temperature analysis along the loop indicates that the hottest plasma is found near the coronal loop top source. The EUV observations suggest that the density in the loop legs increases with increasing height while the temperature remains constant within uncertainties.Comment: 23 pages, 6 figures, accepted for publication in Ap

    Comparative analysis of spring flood risk reduction measures in Alaska, United States and the Sakha Republic, Russia

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017River ice thaw and breakup are an annual springtime phenomena in the North. Depending on regional weather patterns and river morphology, breakups can result in catastrophic floods in exposed and vulnerable communities. Breakup flood risk is especially high in rural and remote northern communities, where flood relief and recovery are complicated by unique geographical and climatological features, and limited physical and communication infrastructure. Proactive spring flood management would significantly minimize the adverse impacts of spring floods. Proactive flood management entails flood risk reduction through advances in ice jam and flood prevention, forecasting and mitigation, and community preparedness. With the goal to identify best practices in spring flood risk reduction, I conducted a comparative case study between two flood-prone communities, Galena in Alaska, United States and Edeytsy in the Sakha Republic, Russia. Within a week from each other, Galena and Edeytsy sustained major floods in May 2013. Methods included focus groups with the representatives from flood managing agencies, surveys of families impacted by the 2013 floods, observations on site, and archival review. Comparative parameters of the study included natural and human causes of spring floods, effectiveness of spring flood mitigation and preparedness strategies, and the role of interagency communication and cooperation in flood risk reduction. The analysis revealed that spring flood risk in Galena and Edeytsy results from complex interactions among a series of natural processes and human actions that generate conditions of hazard, exposure, and vulnerability. Therefore, flood risk in Galena and Edeytsy can be reduced by managing conditions of ice-jam floods, and decreasing exposure and vulnerability of the at-risk populations. Implementing the Pressure and Release model to analyze the vulnerability progression of Edeytsy and Galena points to common root causes at the two research sites, including colonial heritage, unequal distribution of resources and power, top-down governance, and limited inclusion of local communities in the decision-making process. To construct an appropriate flood risk reduction framework it is important to establish a dialogue among the diverse stakeholders on potential solutions, arriving at a range of top-down and bottom-up initiatives and in conjunction selecting the appropriate strategies. Both communities have progressed in terms of greater awareness of the hazard, reduction in vulnerabilities, and a shift to more reliance on shelter-in-place. However, in neither community have needed improvements in levee protection been completed. Dialogue between outside authorities and the community begins earlier and is more intensive for Edeytsy, perhaps accounting for Edeytsy's more favorable rating of risk management and response than Galena's
    corecore