76 research outputs found

    Cellular Prion Protein Mediates Toxic Signaling of Amyloid Beta

    Get PDF
    Prion diseases in humans and animals comprise a group of invariably fatal neurodegenerative diseases characterized by the formation of a pathogenic protein conformer designated PrPSc and infectious particles denoted prions. The cellular prion protein (PrPC) has a central role in the pathogenesis of prion disease. First, it is the precursor of PrPSc and infectious prions and second, its expression on neuronal cells is required to mediate toxic effects of prions. To specifically study the role of PrPC as a mediator of toxic signaling, we have developed novel cell culture models, including primary neurons prepared from PrP-deficient mice. Using these approaches we have been able to show that PrPC can interact with and mediate toxic signaling of various beta-sheet-rich conformers of different origins, including amyloid beta, suggesting a pathophysiological role of the prion protein beyond prion diseases. Copyright (C) 2011 S. Karger AG, Base

    Parkin Is Protective against Proteotoxic Stress in a Transgenic Zebrafish Model

    Get PDF
    Mutations in the gene encoding the E3 ubiquitin ligase parkin (PARK2) are responsible for the majority of autosomal recessive parkinsonism. Similarly to other knockout mouse models of PD-associated genes, parkin knockout mice do not show a substantial neuropathological or behavioral phenotype, while loss of parkin in Drosophila melanogaster leads to a severe phenotype, including reduced lifespan, apoptotic flight muscle degeneration and male sterility. In order to study the function of parkin in more detail and to address possible differences in its role in different species, we chose Danio rerio as a different vertebrate model system.We first cloned zebrafish parkin to compare its biochemical and functional aspects with that of human parkin. By using an antisense knockdown strategy we generated a zebrafish model of parkin deficiency (knockdown efficiency between 50% and 60%) and found that the transient knockdown of parkin does not cause morphological or behavioral alterations. Specifically, we did not observe a loss of dopaminergic neurons in parkin-deficient zebrafish. In addition, we established transgenic zebrafish lines stably expressing parkin by using a Gal4/UAS-based bidirectional expression system. While parkin-deficient zebrafish are more vulnerable to proteotoxicity, increased parkin expression protected transgenic zebrafish from cell death induced by proteotoxic stress.Similarly to human parkin, zebrafish parkin is a stress-responsive protein which protects cells from stress-induced cell death. Our transgenic zebrafish model is a novel tool to characterize the protective capacity of parkin in vivo

    Remodeling of the fibrillation pathway of α-synuclein by interaction with antimicrobial peptide LL-III

    Get PDF
    Liquid-liquid phase separation (LLPS) has emerged as a key mechanism for intracellular organization, and many recent studies have provided important insights into the role of LLPS in cell biology. There is also evidence that LLPS is associated with a variety of medical conditions, including neurodegenerative disorders. Pathological aggregation of α-synuclein, which is causally linked to Parkinson's disease, can proceed via droplet condensation, which then gradually transitions to the amyloid state. We show that the antimicrobial peptide LL-III is able to interact with both monomers and condensates of α-synuclein, leading to stabilization of the droplet and preventing conversion to the fibrillar state. The anti-aggregation activity of LL-III was also confirmed in a cellular model. We anticipate that studying the interaction of antimicrobial-type peptides with liquid condensates such as α-synuclein will contribute to the understanding of disease mechanisms (that arise in such condensates) and may also open up exciting new avenues for intervention

    Molecular basis of the glycosomal targeting of PEX11 and its mislocalization to mitochondrion in trypanosomes

    Get PDF
    PEX19 binding sites are essential parts of the targeting signals of peroxisomal membrane proteins (mPTS). In this study, we characterized PEX19 binding sites of PEX11, the most abundant peroxisomal and glycosomal membrane protein from Trypanosoma brucei and Saccharomyces cerevisiae. TbPEX11 contains two PEX19 binding sites, one close to the N-terminus (BS1) and a second in proximity to the first transmembrane domain (BS2). The N-terminal BS1 is highly conserved across different organisms and is required for maintenance of the steady-state concentration and efficient targeting to peroxisomes and glycosomes in both baker’s yeast and Trypanosoma brucei. The second PEX19 binding site in TbPEX11 is essential for its glycosomal localization. Deletion or mutations of the PEX19 binding sites in TbPEX11 or ScPEX11 results in mislocalization of the proteins to mitochondria. Bioinformatic analysis indicates that the N-terminal region of TbPEX11 contains an amphiphilic helix and several putative TOM20 recognition motifs. We show that the extreme N-terminal region of TbPEX11 contains a cryptic N-terminal signal that directs PEX11 to the mitochondrion if its glycosomal transport is blocked

    Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease

    Get PDF
    Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair

    LUBAC assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of NF-κB to the nucleus

    Get PDF
    Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF-κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF-κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner. Notably, TNF-induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1-ubiquitin-specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF-mediated NF-κB activation, both serving as a signaling platform, as well as a transport mode for activated NF-κB to the nuclear

    NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62

    Get PDF
    NEMO is a ubiquitin-binding protein which regulates canonical NF-kappa B pathway activation in innate immune signaling, cell death regulation and host-pathogen interactions. Here we identify an NF-kappa B-independent function of NEMO in proteostasis regulation by promoting autophagosomal clearance of protein aggregates. NEMO-deficient cells accumulate misfolded proteins upon proteotoxic stress and are vulnerable to proteostasis challenges. Moreover, a patient with a mutation in the NEMO-encoding IKBKG gene resulting in defective binding of NEMO to linear ubiquitin chains, developed a widespread mixed brain proteinopathy, including alpha-synuclein, tau and TDP-43 pathology. NEMO amplifies linear ubiquitylation at alpha-synuclein aggregates and promotes the local concentration of p62 into foci. In vitro, NEMO lowers the threshold concentrations required for ubiquitin-dependent phase transition of p62. In summary, NEMO reshapes the aggregate surface for efficient autophagosomal clearance by providing a mobile phase at the aggregate interphase favoring co-condensation with p62. Selective autophagy helps to degrade aggregated proteins accumulating in neurodegenerative diseases. Here, the authors show that NEMO, a ubiquitin binding protein previously linked to innate immune signaling, is recruited to misfolded proteins and promotes their autophagic clearance by forming condensates with the autophagy receptor p62

    The Mitochondrial Chaperone Protein TRAP1 Mitigates α-Synuclein Toxicity

    Get PDF
    Overexpression or mutation of α-Synuclein is associated with protein aggregation and interferes with a number of cellular processes, including mitochondrial integrity and function. We used a whole-genome screen in the fruit fly Drosophila melanogaster to search for novel genetic modifiers of human [A53T]α-Synuclein–induced neurotoxicity. Decreased expression of the mitochondrial chaperone protein tumor necrosis factor receptor associated protein-1 (TRAP1) was found to enhance age-dependent loss of fly head dopamine (DA) and DA neuron number resulting from [A53T]α-Synuclein expression. In addition, decreased TRAP1 expression in [A53T]α-Synuclein–expressing flies resulted in enhanced loss of climbing ability and sensitivity to oxidative stress. Overexpression of human TRAP1 was able to rescue these phenotypes. Similarly, human TRAP1 overexpression in rat primary cortical neurons rescued [A53T]α-Synuclein–induced sensitivity to rotenone treatment. In human (non)neuronal cell lines, small interfering RNA directed against TRAP1 enhanced [A53T]α-Synuclein–induced sensitivity to oxidative stress treatment. [A53T]α-Synuclein directly interfered with mitochondrial function, as its expression reduced Complex I activity in HEK293 cells. These effects were blocked by TRAP1 overexpression. Moreover, TRAP1 was able to prevent alteration in mitochondrial morphology caused by [A53T]α-Synuclein overexpression in human SH-SY5Y cells. These results indicate that [A53T]α-Synuclein toxicity is intimately connected to mitochondrial dysfunction and that toxicity reduction in fly and rat primary neurons and human cell lines can be achieved using overexpression of the mitochondrial chaperone TRAP1. Interestingly, TRAP1 has previously been shown to be phosphorylated by the serine/threonine kinase PINK1, thus providing a potential link of PINK1 via TRAP1 to α-Synuclein
    corecore