368 research outputs found

    Palpation force modulation strategies to identify hard regions in soft tissue organs

    Get PDF
    This work was supported by EPSRC MOTION grant (grant number EP/N03211X/1), National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London and Vattikuti Foundation

    Autonomous Robotic Palpation of Soft Tissue using the Modulation of Applied Force

    Get PDF
    Palpation or perception of tactile information from soft tissue organs during minimally invasive surgery is required to improve clinical outcomes. One of the methods of palpation includes examination using the modulation of applied force on the localized area. This paper presents a method of soft tissue autonomous palpation based on the mathematical model obtained from human tactile examination data using modulations of palpation force. Using a second order reactive auto-regressive model of applied force, a robotic probe with spherical indenter was controlled to examine silicone tissue phantoms containing artificial nodules. The results show that the autonomous palpation using the model abstracted from human demonstration can be used not only to detect embedded nodules, but also to enhance the stiffness perception compared to the static indentation of the probe

    Modelling the structure of object-independent human affordances of approaching to grasp for robotic hands

    Get PDF
    Grasp affordances in robotics represent different ways to grasp an object involving a variety of factors from vision to hand control. A model of grasp affordances that is able to scale across different objects, features and domains is needed to provide robots with advanced manipulation skills. The existing frameworks, however, can be difficult to extend towards a more general and domain independent approach. This work is the first step towards a modular implementation of grasp affordances that can be separated into two stages: approach to grasp and grasp execution. In this study, human experiments of approaching to grasp are analysed, and object-independent patterns of motion are defined and modelled analytically from the data. Human subjects performed a specific action (hammering) using objects of different geometry, size and weight. Motion capture data relating the hand-object approach distance was used for the analysis. The results showed that approach to grasp can be structured in four distinct phases that are best represented by non-linear models, independent from the objects being handled. This suggests that approaching to grasp patterns are following an intentionally planned control strategy, rather than implementing a reactive execution

    The Magnetic Fields at the Surface of Active Single G-K Giants

    Full text link
    We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets and use the least-squares deconvolution (LSD) method. We also measure the classical S-index activity indicator, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars.The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a 'magnetic strip' for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro. Our results show that the magnetic fields of these giants are produced by a dynamo. Four stars for which the magnetic field is measured to be outstandingly strong with respect to that expected from the rotational period/magnetic field relation or their evolutionary status are interpreted as being probable descendants of magnetic Ap stars. In addition to the weak-field giant Pollux, 4 bright giants (Aldebaran, Alphard, Arcturus, eta Psc) are detected with magnetic field strength at the sub-gauss level.Comment: 34 pages, 22 Figures, accepted for publication in Astronomy & Astrophysic

    The unprecedented optical outburst of the quasar 3C 454.3. The WEBT campaign of 2004-2005

    Get PDF
    The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting more than 1 year and culminating in spring 2005. The maximum brightness detected was R = 12.0, which represents the most luminous quasar state thus far observed (M_B ~ -31.4). In order to follow the emission behaviour of the source in detail, a large multiwavelength campaign was organized by the Whole Earth Blazar Telescope (WEBT). Continuous optical, near-IR and radio monitoring was performed in several bands. ToO pointings by the Chandra and INTEGRAL satellites provided additional information at high energies in May 2005. The historical radio and optical light curves show different behaviours. Until about 2001.0 only moderate variability was present in the optical regime, while prominent and long-lasting radio outbursts were visible at the various radio frequencies, with higher-frequency variations preceding the lower-frequency ones. After that date, the optical activity increased and the radio flux is less variable. This suggests that the optical and radio emissions come from two separate and misaligned jet regions, with the inner optical one acquiring a smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index behaviour (generally redder-when-brighter) during the outburst suggests the presence of a luminous accretion disc. A huge mm outburst followed the optical one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux started to increase in early 2005 and reached a maximum at the end of our observing period (end of September 2005). VLBA observations at 43 GHz during the summer confirm theComment: 7 pages, 4 figures, to be published in A&
    • …
    corecore