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Abstract

Grasp affordances in robotics represent different ways to grasp an object involving a
variety of factors from vision to hand control. A model of grasp affordances that is able
to scale across different objects, features and domains is needed to provide robots with
advanced manipulation skills. The existing frameworks, however, can be difficult to
extend towards a more general and domain independent approach. This work is the first
step towards a modular implementation of grasp affordances that can be separated into
two stages: approach to grasp and grasp execution. In this study, human experiments of
approaching to grasp are analysed, and object-independent patterns of motion are
defined and modelled analytically from the data. Human subjects performed a specific
action (hammering) using objects of different geometry, size and weight. Motion
capture data relating the hand-object approach distance was used for the analysis. The
results showed that approach to grasp can be structured in four distinct phases that are
best represented by non-linear models, independent from the objects being handled.
This suggests that approaching to grasp patterns are following an intentionally planned
control strategy, rather than implementing a reactive execution.

Introduction 1

Multifingered grasping in robotics is a widely studied problem. Despite this, a general 2

solution has not been found yet. Over the course of time, different approaches were 3

attempted to address the problem. Early focus [1] was on control algorithms for three or 4

four fingered hands [2]. The approach was to optimise the placement of robotic 5

fingertips on the surface of an object to achieve force or form closure with the hand grip. 6

However, it is difficult to scale such approach to novel or a large number of objects, as it 7

requires ad-hoc computations of the optimal placements. Recent attempts show that it 8

is possible to optimise this [3]. Later approaches exploited a known characteristic of 9

human grasping - grasping synergies [4]. It is the ability to move the fingers as a group 10

rather than individually. This concept has been implemented in hardware [5, 6] and in 11

software [7, 8]. Such approaches are simpler and easier to scale, but selecting the 12

minimum number of synergies in a hand design [9] or formally assessing the quality of 13

grasp [10] are still research topics in their early stage. 14
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In order to perform robotic grasping of an object, it is first required to reach it with 15

the end-effector. Controllers for reaching have better overall performance and are used 16

in industrial set-ups. Direct reaching is mostly a solved problem [11], while constrained 17

reaching, i.e. obstacle avoidance [12] or following a trajectory [13] or a strict time 18

limit [14], is still considered a research topic. The combination of reaching and grasping 19

controllers in robotics, instead, was not investigated as much. Reaching and grasping 20

are often considered as separate control problems, although some studies from 21

neuroscience of grasping suggest the contrary [15,16]. The influence of reaching on 22

grasping is often taken into account when designing [17] or controlling [8, 18] a robotic 23

hand, but has not yet been quantified formally how the two motions influence each 24

other. Therefore, it is worth to study the interactions between reaching and grasping. A 25

good reaching might compensate for a bad grasping, or a different reaching trajectory 26

might be required for a different grasp posture. 27

There are many studies that combine reaching and grasping to obtain a better 28

understanding of the environment, to learn how to use an object or to guide the hand 29

effectively. Although those studies do not openly discuss the interaction between 30

reaching and grasping, they do take it into account. Often, perception and learning 31

aspects are included in the analysis of the combination of reaching and grasping. 32

Interactive perception is a technique that requires the robot to build a representation of 33

an object by interacting with it and observing the outcome of its actions [19]. An 34

application of grasping to use an object can be seen in [20] where authors are employing 35

the technique to teach a robot how to use tools from perception and interaction. For 36

instance, the technique can be used to determine interactively how to fold laundry [21] 37

when combined with gaussian processes. The combination of manipulation and reaching 38

in interactive perception is used to improve the knowledge of the environment, and to 39

understand how to interact with it. Therefore, perception and learning are fundamental 40

components of this technique. Another popular and similar technique is active vision. 41

This methodology originally addresses complex computer vision problems by changing 42

the view point of the camera [22]. Such technique can be used to optimise the number 43

of processed frames needed to execute a grasp [23], or to generate grasping points 44

on-line to guide visual servoing [24]. Hence, in this technique the interaction between 45

vision and reaching is used to guide grasping. However, as the end-effector is mounted 46

on the same arm, grasping is influenced by reaching as a result. The above approaches 47

study the interaction between reaching and grasping but do not target the phenomena 48

directly. In such way, it is difficult to understand the phenomena in depth and scale it 49

for different objects and domains (areas of application). As such, the main disadvantage 50

is that those approaches are tailored to the specific problem. Additionally, an intense 51

use of learning, required by interactive perception, often needs long on-line training for 52

parameter tuning or model definition. 53

To overcome those limitations, there is a growing interest in studying human 54

affordances for object manipulation [25]. The term ”affordance” has two different 55

interpretations, one psychological and the other neuroscientific. The first 56

interpretation [26], also named Gibsonian or object affordance, states that the 57

affordance of an object is a list of potential uses that the object itself suggests or allows 58

to the user. The neuroscientific interpretation, sometimes referred as grasp affordance, 59

defines an affordance as a list of possible strategies to grasp an object. It is believed 60

that a visual stimuli triggers a set of possible actions to be performed [27] and the 61

specific motion implementation is selected in the primary motor cortex [28] as initiation 62

of a voluntary action. Our definition of affordance is closer to the neuroscientific 63

interpretation than to the psychological one. In this work, an affordance is defined as a 64

possible way to approach and to grasp an object in order to perform a predefined action. 65

In our definition the action can be divided in two parts: approaching an object and 66
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grasping it. In this work, the term approaching is referred to the act of reaching an 67

object with the intention of grasping it and using it to perform an action. This is 68

different from the term reaching which implies an open-loop displacement of the hand 69

to a defined position; for instance, it could be touching a surface, pressing a button or 70

positioning an industrial robotic end-effector for soldering. It is important to stress this 71

difference, since an open-loop reaching action or grasping an object without the 72

intention of using it is not sufficient to obtain a grasp affordance. Indeed, an open-loop 73

action as described above gives no guidance in selecting the most appropriate motion. 74

Affordances openly target the interaction between reaching and grasping to 75

understand the phenomena of approaching to use an object. Grasp affordances focus 76

more on the implementation facet of the action, while object affordances focus more on 77

the cognitive and reasoning side. In one of the first studies [29] of implementation of 78

object affordances, authors describe how optical flow can aid a robot to learn to roll an 79

object from visual perception. A later study [30], uses Bayesian networks to infer the 80

object affordance of specific objects from a restricted set of available actions that can be 81

performed on them. In both cases the approach is tailored to the domain of use or to a 82

limited set of features which is difficult to extend. Other studies proposed different 83

approaches for representing a grasp affordance. In [31] authors encode a grasp 84

affordance for a given object as a probabilistic gripper placement learned either from 85

human imitation or an off-line model, and improved by experience to compensate for 86

mismatches from the original model. In [32], an ontological approach is used to infer the 87

most appropriate grasp affordance given a fixed set of perceived object properties. The 88

common limitation of all the above studies is that the approaches are tightly coupling 89

different aspects of affordances together, such as vision, learning and motion control. 90

An affordance is composed by an interrelation of different features, such as perception, 91

reaching and grasping. However, a strong coupling between features creates complicated 92

and domain specific systems that are difficult to scale on a larger set of objects, 93

properties or new domains [33,34]. 94

The focus of the above works is on specific manipulation tasks. Hence, it is difficult 95

to design a general approach for a grasp controller that can manipulate novel everyday 96

objects, which are designed for human use. In this respect, human studies can provide 97

guidelines for future robotic implementations and several times this happened in the 98

past [35]. For example, in [36], the authors are modelling human touch strategies of soft 99

objects. The same model was later implemented on a robotic platform [37] with good 100

results. Another example is shown in [38]. The authors perform human experiments of 101

pick and place, grasping with sensory constraints, to identify the conditions that favour 102

an action plan over another. The model that defines the conditions and the plans is 103

general enough to be transferred to a robot with adequate sensing capabilities for 104

grasping and reaching. This shows that human studies can be used to set a base for a 105

robotic implementation or to guide the robotic learning. 106

This work establishes a first step towards a modular definition of grasp affordance, 107

where different aspects, such as approaching and grasping, can be combined without the 108

need of tailoring them to the specific domain of application. Our approach in this work 109

is to analyse the approaching part of a grasp affordance from human demonstrations 110

and to provide a model that describes the general pattern. This work is a fundamental 111

study of human behaviour required for implementing robotic approaching to grasp 112

controllers. For an initial robotic implementation, it is sufficient to provide a control 113

strategy for displacing the end effector, in the form of a position or speed trajectory. At 114

this stage, it is not required to take into account the end effector orientation as this can 115

be derived in different ways by an existing controller, such as a Cartesian hand 116

controller. In this paper, it is analysed the hand trajectory only of the motion, since the 117

aim is to provide a base for object independent human-inspired grasp affordance 118
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controllers in robotics and further insights on the human motion. 119

This paper addresses the question of whether or not, a general, object independent 120

pattern of the approaching part of a grasp affordance, defined previously, can be 121

characterised and modelled from human demonstrations. As well as studies whether a 122

grasp affordance approach motion is a planned strategy or it is a set of reactive 123

adjustments performed during the execution. 124

The contributions of this paper are: 125

� The interaction between reaching and grasping is characterised by analysing 126

human grasping experiments in terms of hand to object distance. 127

� The motion pattern structure is defined in terms of rate change of the distance 128

and of the displacements of the fingers. 129

� A set of object-independent models is derived from the data to describe a general, 130

object independent pattern of approach to grasp. 131

The proposed interpretation of grasp affordance can shift the attention from the specific 132

object to grasp to how well the selected posture will perform the selected action, 133

reducing the dependence on the specific domain of application. 134

The rest of the paper is organised as follows: in Section II the experimental data and 135

data preprocessing methodology is discussed. Section III presents the results of the data 136

analysis and describes the phases of approaching. In Section IV a set of models for the 137

data is presented. Section V is the discussion and Section VI draws out the conclusions. 138

1 Methodology 139

1.1 Experimental Protocol 140

The aim of this study is to understand whether humans have a general, 141

object-independent pattern of approaching to grasp to perform a specific action and to 142

model its structure. Additionally, it aims at providing fundamental insights on the 143

structure of human approaching motion for future robotic control applications following 144

a wider multidisciplinary approach. It is important to underline that a specific action to 145

perform is needed, as this constraints the list of possible strategies and postures to the 146

ones actually useful for the task. Not defining an action to be performed creates an 147

open scenario where any approach to grasp strategy is acceptable. In this way, it is not 148

possible to discriminate the most appropriate strategy and grasp affordance. The action 149

selected for the task is hammering on a point. This action was selected because it is 150

easy to generalise to similar actions, such as inserting. Additionally, hammering is one 151

of the first actions ever learned by infants [39] and it was the action used by prehistoric 152

humans for crafting the Oldowan stone tools [40], hence this action could also be used in 153

other simple scenarios such as basic crafting. 154

Approach to grasp data and object motion data were collected from human trials for 155

this study. For this purpose, it is important to track the hand, wrist and fingers motion 156

in order to define trajectories and finger postures in a trial. Also the object position 157

and orientation are tracked through the whole experiment. This is required in order to 158

highlight the overall grasp affordance decision process by relating the object position 159

and orientation to the grasping motion of the human participant, instead of processing 160

the two independently. 161

A system of four motion tracking cameras (Vicon Bonita) was used for recording the 162

object data at a capture frequency of 100 Hz. Additionally, a commercial arm and hand 163

wearable fibre optic motion capture (MoCap) system (Measurand ShapeHandPlus) was 164
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used to record human data at a capture frequency of 77 Hz. Two sensing systems are 165

required to ensure an accurate tracking throughout the experiment, both for the hand 166

and the object. The use of a vision-based tracking system on its own [41] is subject to 167

inaccuracies as the hand occludes the object when grasping. Those can be mitigated by 168

forcing subjects to employ a limited set of grasping postures. This would influence the 169

natural reaching to grasp motion and limit the analysis. On the other side, a data glove 170

tracks the hand very accurately, but it provides little spatial information on the position 171

of the object in the scene. As the analysis relies on the relationship between hand and 172

object, those two entities have to be tracked and related accurately at all times to 173

obtain meaningful observations. Hence both tracking systems have to be used together 174

to allow subjects to perform natural motions while guaranteeing high accuracy, 175

robustness of tracking and detailed data. The combined system is robust as data can be 176

lost only if the object is occluded from the view of most cameras. As the cameras 177

surrounded the subject, such events were infrequent. The number of frames lost by the 178

MoCap system is negligible. 179

The capture frequencies of the two devices were aligned to 100 Hz through linear 180

interpolation. The overall tracking error of the combined tracking systems was no more 181

than 1.5mm. 182

Participants were seated in front of a table and asked to wear the MoCap system on 183

their dominant side. The table was placed in the centre of the field of view of the four 184

cameras and it was covered with a black cloth to eliminate reflections from artificial 185

light. The room was lit with artificial light only and the illumination was kept constant 186

throughout a capture session. Fig. 1 shows the complete set up. 187

Fig 1. Illustration of the complete experimental set-up

A set of eight objects, with different shapes and weights, was used for the 188

experiments: a plastic ball, a paper coffee cup, a card box, a phone headset, a CD keep 189

case, an hard-cover book, a computer mouse and a hammer. The objects were selected 190

to be of everyday use and to have different geometrical properties and weights. Fig. 2 191

shows the properties of the objects. The aim was to make the action and the selection 192

of the hammering surface non-trivial and to stimulate unusual approach to grasp 193

strategies. In this way it is possible to define a general object-independent grasping 194

pattern given the variability of approaches. The objects were given one by one to each 195

subject in random order and, when applicable, random orientation - the longitudinal 196

axis of the object was either parallel or orthogonal to the table edge. 197

Fig 2. List of objects used in the experimentation and their properties. The
longitudinal axis is highlighted in green on each object’s picture. The first dimension is
along the longitudinal axis, the second is orthogonal to the axis and lying on the same
plane. � stands for diameter, H stands for height.

Nine subjects, seven males and two females, performed the experiments. The study 198

was approved by the King’s College London Ethical Committee, REC reference Number 199

BDM/12/13-27, and participants provided written informed consent. The subjects were 200

recruited as volunteers among the members of the Centre for Robotics Research in the 201

Department of Informatics at King’s College London. The experiments were performed 202

in the period from October to November 2015. Participants had no history of previous 203

motor impairments and they were all right handed. The mean hand width was 79.7 mm, 204

the mean hand length was 189.3 mm. The measurements were performed as in [42] 205

based on hand breadth and length from digitizer. Each subject performed the 206

experiments with the objects placed in two different orientations, when possible. The 207

cup and the ball do not have a unique orientation due to their circular base. Each 208
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approach to grasp experiment was repeated two times. In total, 28 demonstrations were 209

collected for each participant. The total number of trials collected exceeds those usually 210

obtained in similar internationally recognised studies on human-inspired robotic 211

control [7, 38,43,44]. 212

For each participant, at the beginning, a hammering point on his non-dominant side 213

was marked on the table with a paper cup as a damping place holder. The point was 214

selected so that it would be easy to approach, grasp and hammer without the need of 215

bending or rotating the torso. A small platform with 5 trackers was used as a common 216

reference point for the Vicon and MoCap systems. It was placed on the corner of the 217

table close to the dominant side of the subject. The position and orientation of the 218

reference plate are fixed for the duration of the whole trial. The object to be grasped is 219

positioned in front of the subject to allow comfortable approaching and grasping 220

without the need of bending the torso. The participants are always able to perform a 221

direct approach motion without avoiding any obstacle when performing the experiment. 222

Subjects were shown a brief demonstration of the experimental protocol prior 223

starting and they were asked if they had any question on how to perform the 224

experiment. At the beginning of each trial, subjects adopted the initial reference 225

posture shown in Fig. 3. After adopting this initial posture, subjects performed the 226

experimental protocol as follows: 227

1. Subjects covered the reference plate with their hand so that it is covered and not 228

visually tracked. Losing the tracking allows to synchronise the starting point of 229

the both data streams. 230

2. Subjects returned to the initial posture, so that the reference plate is tracked 231

again (Fig. 3). 232

3. Subjects approached the object naturally. No constraints or suggestions were 233

given on which grasp affordance was the most suitable. 234

4. Subjects hammered the object on the area selected during the set-up. Subjects 235

were free to choose the hammering style or point of contact with the hammering 236

area. 237

5. Subjects placed the object away and the data collection was stopped. 238

If the visual tracking of the object was lost at any point during the experiment, the 239

trial was repeated. The trial was repeated also if the tracking of the reference plate was 240

lost at any time when not specified by the protocol. 241

Fig 3. Initial reference posture: arm in straight position parallel to the ground and
orthogonal to the chest, hand fully open and flat fingers

Although the whole action listed above was captured, only the motion within step 3 242

was analysed in this paper. Performing the complete action was required to ensure that 243

subjects would perform a natural approaching to grasp pattern, so that any difference 244

with plain reaching could be highlighted. 245

1.2 Data Processing 246

In the analysis the relationship between hand position and the object centroid is 247

characterised. 248

The object and reference plate centroid positions were acquired directly from the 249

visual tracking system with no need of further processing. 250
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Instead, the positions of every joint of the kinematic model of the arm were collected 251

during a trial. The hand position is defined as the centroid between the wrist, middle 252

and ring fingers metacarpophalangeal (MCP) joint positions. The positions were 253

derived from the kinematic model using the MoCap toolbox for MATLAB [45]. 254

Metacarpal, proximal and distal interphalangeal joint angles and metacarpal 255

adduction/abduction joint angles of the index, middle, ring and little fingers were also 256

collected (Fig. 4(a) and 4(b)). As commercial MoCap gloves introduce inaccuracies 257

when capturing thumb motions, the thumb joints were not collected. This choice do not 258

influence the analysis, since the precise details of the hand posture are not considered. 259

The fingers motion as a whole is examined to provide an additional qualitative 260

description to the approach patterns. Only MCP flexion/extension joint motion of the 261

fingers was analysed as it has the greatest impact on the motion of the whole finger [46]. 262

The main focus of the analysis is the approaching distance of the hand to the object. As 263

such, the motion of the fingers is to be used qualitatively as a reference and to provide 264

further context to the reader during the analysis. Further in the text, the MCP 265

flexion/extension data is referred as simply metacarpal data. The MCPs speed was 266

obtained from the time derivative of the MCP position data and it was aggregated 267

taking the mean as follows: 268

f =
(i′t + m′t + r′t + l′t)

ttot
(1)

Where i′t, m
′
t, r
′
t and l′t are the speed values at time t of the index, middle, ring and 269

little fingers, while ttot is the duration of the whole sequence. f is the mean MCP speed 270

data shown in the analysis. The speed of each finger was derived from the original not 271

normalised position data. Finger motion data was aggregated in this way to provide a 272

clear and immediate qualitatively summary of the overall fingers motion during 273

approaching. 274

Fig 4. Schematics of the hand bones and joints involved in the capture

The starting point of the data streams of the visual tracking and wearable MoCap 275

were synchronised as part of the experimental protocol. The common starting point of 276

the two capturing systems was the moment where the reference plate lost visual 277

tracking as the subject’s hand covered its centre. Subjects must cover the reference 278

plate centre to ensure that visual tracking is lost. As such the centroid of reference plate 279

and the centre of the hand are always close to each other on the XY plane by design, 280

reducing the reconstruction error. Additionally, a fixed offset, corresponding to the 281

height of the reference plate’s markers, was removed from the wearable MoCap data. 282

This allows to align the centre of the hand to the centroid of the reference plate also 283

along the Z axis. The reference frame of the MoCap data was transformed to the 284

reference plate coordinates in order to have a common base between the two capture 285

devices and allow comparisons. The reference frame of the visual tracking system 286

coincided with the reference plate centroid. 287

Although the full motion was captured, from the initial position to hammering; only 288

the approaching part of it was analysed. Within a whole trial, the beginning of the 289

approaching sequence was marked by the metacarpal and proximal joints of the fingers 290

just starting to displace. The end of the sequence was marked by the object centroid 291

being just displaced vertically (Z axis) as the hand started to lift the object. Table 1 292

summarises all the values used for segmenting the approach motion. The values in the 293

table are normalised medians and variances. The rest of the motion was still required to 294

make sure that subjects would perform a realistic approach to grasp as the object would 295

effectively be used for hammering. The experimental protocol was designed to facilitate 296
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identifying and segmenting the approaching part of the motion. Also, using two 297

different capturing systems allowed to discriminate different key moments univocally, as 298

the same moment can be observed on both systems. The initial posture adopted by 299

subjects is unusual when approaching to grasp since the arm and all the fingers are fully 300

extended. Subjects immediately change their fingers configuration when initiating the 301

motion. This moment marks the beginning of the analysed sequence and can be 302

observed very clearly from the wearable MoCap system’s data. To further reduce the 303

possibility of confusing a similar ambiguous posture with the initial posture, the 304

protocol requires subjects to cover the reference plate prior adopting the initial posture. 305

The only moment when the reference plate is not tracked is always at the beginning of 306

the data collection. As such, it is straightforward to observe this moment in the visual 307

tracking system’s data. Since the loss of the reference plate’s tracking happens seconds 308

before adopting the initial posture, the beginning of the analysed sequence can be 309

identified by combining the information obtained from both capture systems. Similarly, 310

the end of the approaching motion can be identified by observing the data from the 311

combined systems. During a trial, the object is still until grasped. Afterwards, the 312

object’s centroid displaces vertically as the subject transports the object to hammer. 313

The displacement of the centroid marks the end of the analysed sequence. At the same 314

time, the subject’s hand is also displacing in the same direction of the centroid from a 315

position close to the table’s surface. When both systems’ data show that hand and 316

object are moving at the same time, it can be concluded unambiguously that the 317

approaching motion is finished. Our approach is different from the state-of-the-art. 318

Typically, other studies analyse the whole motion sequence which is designed to capture 319

a single phenomenon [47–50]. The aim of this experiment is to highlight how all the 320

factors in a complete action influence the approaching phase of the motion, rather than 321

just studying approaching in isolation. Including other factors in the experiment is 322

required as this study proposes an application to robotics. As such, considering the 323

approaching motion individually would abstract important elements of the human 324

behaviour, resulting in an approaching controller which might not work in real life. 325

Table 1. Summary of the median normalised values and variances of the quantities
used for segmenting the approaching motion from a whole trial.

Quantity Beginning End
Index Metacarpal −0.023 ± 0.04 −0.34 ± 0.41
Index Proximal 0.003 ± 0.006 0.91 ± 0.05
Middle Metacarpal −0.003 ± 0.035 0.29 ± 0.48
Middle Proximal 0 ± 0.003 0.99 ± 0.02
Ring Metacarpal −0.008 ± 0.047 0.90 ± 0.33
Ring Proximal 0.007 ± 0.006 0.99 ± 0.026
Little Metacarpal 0.07 ± 0.09 0.82 ± 0.37
Little Proximal 0.02 ± 0.02 0.99 ± 0.05
Object X Position 0.26 ± 0.01 0.27 ± 0.02
Object Y Position 0.66 ± 0.01 0.70 ± 0.03
Object Z Position 0.046 ± 0.002 0.13 ± 0.02
Palm X Position 0.79 ± 0.06 0.61 ± 0.07
Palm Y Position 0.39 ± 0.09 −0.40 ± 0.08
Palm Z Position 0.66 ± 0.06 0.27 ± 0.10

The normalised euclidean distance between centre of the palm and the object 326

centroid was calculated and used to quantify the relationship between hand and object 327

positions. The hand rotation and the hand-object angular relationships (azimuth and 328

zenith) were collected but not analysed as they are out of the scope of this work. The 329
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normalised euclidean distance is defined as approach distance and it was calculated as 330

follows: 331

a =

√√√√ n∑
t=1

(
Ot

d

Omx
d

−
P t
d

Pmx
d

)2 (2)

Where a is the approach distance, Ot
d and P t

d are the values of the object and palm 332

respectively for dimension d observed at instant t. Omx
d and Pmx

d are the maximum 333

position values for dimension d of the object and palm. Finally dimension d refers to x, 334

y and z axes. 335

The approach distance represents the distance between the centre of the hand and 336

the centroid of the object. It is a quantity which changes over time, as the hand gets 337

closer to the object. The approach distance is a relationship between the hand and the 338

object and it is used to quantify how close the hand is to the object at a given time. 339

The purpose of normalising only on the maximum value is to solely improve the 340

presentation of the data by transforming it in a non-dimensional quantity. As all the 341

collected data already lays within the same range, a full normalisation is not otherwise 342

required for the analysis. 343

The normalised approach distance data was derived two times, to obtain speed and 344

acceleration that were filtered with a moving average filter with span 7. The speed and 345

acceleration were not normalised a second time once the time derivative of the original 346

quantity was taken. 347

Results 348

1.3 Statistical Analysis 349

We conducted statistical analysis of behavioural data to test whether factors such as the 350

grasped object, the preforming subject, or the specific execution influence the approach 351

motion. As we are defining a common object-independent approaching to grasp pattern, 352

those tests are required to verify whether every trial can be treated independently or 353

whether all trials can be clustered and analysed together or in groups. As such, an 354

Analysis of Variance (ANOVA) test was performed. 355

The statistical analysis was performed to understand whether specific features of 356

approaching to grasp depend on the object, the specific trial or the performing subject. 357

To this respect, the standard deviation of approach distance for each individual trial 358

was normalised and used as dependent variable. The standard deviation describes the 359

overall rate of change of the distance within a trial. The larger the standard deviation 360

the more the distance was changing undergoing peaks and valleys. Therefore, it is useful 361

to observe which factor influences the change of the approach distance. It is expected to 362

see no significant difference across trials if the standard deviation is similar. The 363

independent variables were the subjects, objects and trial number for an object-subject 364

combination. The results of Shapiro-Wilk test demonstrated the normal distribution of 365

the data. The three hypotheses were tested using a one way ANOVA with 366

1-degree-of-freedom test. A hypothesis is considered significant if the Fisher’s index (F ) 367

is bigger than F critical and the null hypothesis is rejected with 99.9% confidence level, 368

which corresponds to a probability distribution (p) less than 0.001. 369

The variance of the approach distance did not show a significant dependence on the 370

object being grasped (F1,230 = 1.75, p = 0.19) or the specific trial 371

(F1,230 = 0.04, p = 0.85) but it did show a significant dependence on the performing 372

subject (F1,230 = 4.93, p < 0.001). Therefore the performing subject is a determining 373

variable in deciding the shape of the approach motion for grasping. This result can be 374
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explained as every person performed the experiment at his or her own pace. As some 375

subjects were more careful or more confident, the speed of the execution changed 376

although every object was grasped more or less in the same way. 377

Additionally, it was tested whether the grasped object influences the structure of the 378

approaching motion for each subject. Every trial was segmented in four phases, which 379

are described in Section 1.4 The data in the first three phases of the motion was tested 380

individually for each subject, the fourth phase was not assessed since, as mentioned in 381

Section 1.4, this phase is performed differently. Each segment of trial was normalised 382

and interpolated to obtain a matching duration. Two tests were performed: it was 383

tested the similarity across pairs of trial segments and the similarity between all trial 384

segments and a global reference - the mean. If both tests score a value lower than 5% of 385

the overall maximum motion, then the object does not influence the approaching 386

motion of individual subjects. Firstly, the pairwise similarity was evaluated as the mean 387

squared difference between every two segments of trial in the same phase from the same 388

subject. If the grasped object does not influence the approaching motion, then the trials 389

shall not be too different from each other. For each subject and phase, every trial 390

section was combinatorially tested with the others for a total of 10044 unique tests. The 391

pairwise difference was evaluated as follows: 392

p = E[(d1 − d2)2] (3)

Where d1 and d2 are two segments of trial of the same subject, E[ ] is the mean 393

value of the squared difference among the trials and p is the pairwise difference. A low 394

pairwise difference implies high similarity between the two trials. The value of the 395

difference is presented as a percentage of the total motion for clarity. The mean 396

pairwise difference aggregated across all subjects and phases is 0.25% ± 0.54. The 397

pairwise difference was within range [0.001 ± 0.001 0.004 ± 0.004] for phase one, 398

[0.17 ± 0.21 0.98 ± 1.12] for phase two and [0.06 ± 0.06 0.66 ± 0.77] for phase three. 399

Furthermore, for each performing subject, the variance of the segments of trial within 400

each phase was calculated, and it is also reported as a percentage over the total motion. 401

If the grasped object influences the approaching motion, it is expected to observe a high 402

variance as the trials overall significantly differ from their mean. The variance for all 403

the subjects is in the range [0.05 0.20] for phase one, [0.14 0.80] for phase two and 404

[0.03 0.36] for phase three. Since both tests demonstrated that the trials are at most 2% 405

different from each other and no more than 1% different from the mean, if grouped by 406

subjects, we can conclude that the grasped object does not influence the motion. 407

These results shows that the data can be grouped by subject for the analysis as the 408

performing subject is a factor that influences the characteristics of the motion. These 409

findings provide fundamental insights for robotics as they allow to derive approaching 410

models which are generalisable across different objects. In Section 1.4, for the purpose 411

of characterising the data, each trial has been analysed individually to provide a more 412

detailed and granular analysis, as well as to avoid possible approximations. Discussions 413

on the common features seen in the subjects’ data are drawn by observing all the trials 414

individually and relating the single trials to each other by subject. 415

1.4 Characterisation of Approach Patterns 416

In this section the analysis of the data is discussed and a common structure of the 417

approach motion is formulated. The data is analysed by observing the individual 418

patterns of motion of the approach distance speed, acceleration and fingers speed 419

variability. As the purpose of this study is to analyse approach motions of the hand to 420

the object, the speed of the approach distance is the fundamental quantity analysed 421

since it represents the rate of change of the distance between palm and object over time. 422
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The acceleration is considered to highlight changes in this fundamental quantity and to 423

give structure to the motion. The hand position during approaching is considered, but 424

not reported as it does not highlight well enough the dynamic changes that are involved 425

during approaching. For similar reasons, the speeds of the metacarpophalangeal (MCP) 426

joint displacement of the index, middle, ring and little fingers are analysed. To better 427

highlight the moments where the MCP joints displace the most, the variance of the 428

mean of the four fingers across the motion is examined. A high variance indicates a part 429

of interest for the analysis since large MCP joint displacements imply that the hand is 430

performing an activity such as preshaping. 431

Empirical comparisons of each trial showed that we can discriminate four phases. 432

The first three phases represent the approach to grasp motion. The last phase comprise 433

the final stage of grasping, when the object is firmly enveloped by the fingers, and the 434

beginning of the lifting motion of the object is performed prior hammering. Each phase, 435

except for the last, has its own characteristics which are common across all the trials. 436

Fig. 5 shows a sample trial from the dataset. 437

Fig 5. Sample approach to grasp trial. From top to bottom plot: hand position, speed,
acceleration and variance of the four metacarpophalangeal joint speeds for the whole
approach to grasp motion. The first data point corresponds to the moment the hand
and the finger start to move, the last 17% of the motion shows the object being lifted
for hammering. The Roman numbers identify the four phases.

To demonstrate that the data is similar across the dataset, a correlation analysis is 438

performed. The analysis is performed on positional data since it is the least processed 439

data. The main issue to address is that subjects were performing the experiment at 440

their own pace, hence the length of a phase or of the whole experiment is influenced by 441

external factors such as the subject’s emotions (rush, boredom, etc.). For this reason, 442

the four phases are analysed independently, and the duration of each phase for different 443

trials are matched through interpolation. In this way the pattern structure within the 444

phase is preserved. Each trial is segmented one by one according to the criteria defining 445

each phase. The pairwise correlation coefficients for all the trials are calculated and the 446

overall median value of all the coefficients is taken. The correlation coefficients for the 447

first three phases are 0.93 (p < 0.000001), 0.99 (p < 0.000001) and 0.97 (p < 0.000001) 448

respectively. This shows that the observed structure of the motion and the 449

characteristics of each phase are common across all trials irrespective of the subject and 450

the approached object. The fourth phase, instead, shows a median correlation coefficient 451

of 0.16 (p < 0.00001) demonstrating that this phase is performed in different ways. This 452

result is interesting since this phase features a high MCP joint speed variability which 453

suggests that the fingers have a significant role in finalising the grasping, but the low 454

correlation coefficient indicates that the hand position plays an important role as well. 455

Since the focus of this work is on the first part of the approach to grasp motion, this 456

feature is not discussed further and will be analysed in future work. 457

Below, the four phases are discussed more in detail. The features used to distinguish 458

the four phases within the data are summarised at the beginning of each section. The 459

value of the acceleration was used to split the data in phases. The average coverage of a 460

phase is calculated from the corresponding lengths of every individual trial. The 461

distribution of the lengths of each phase is summarised comprehensively in Fig. 6. Since 462

the data can be aggregated per subject (Section 1.3), common features within subjects 463

are presented as such when appropriate, although each trial was observed individually. 464
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Fig 6. Distributions of phase coverages with respect to the whole motion. The abscissa
(X axis) indicates the percentage of coverage of the whole motion, while the ordinate (Y
axis) describes the number of trials with that coverage. Graphs (a), (b), (c), (d) show
the distribution for phase one, two, three, four.

1.4.1 First Phase 465

In the first phase, the hand starts its approach motion to the object and the finger 466

MCP joints just begun to displace. This phase covers as average 17.86% ± 6.92% of the 467

total motion across subjects. The distinctive features of this phase are as follows: 468

� the hand speed increases to a peak and then starts decreasing; 469

� the hand decelerates abruptly until its global minimum; 470

� finger posture starts to shape from the initial flat hand configuration. 471

The value of the speed peak is independent from the object approached. Although 472

the MCP joints are moving, their variance is not notably larger as the maximum mean 473

peak in this phase is 22% times smaller than the global mean maximum. This suggests 474

that the fingers are displacing because the preshaping is just started. Most of the 475

preshaping motion is performed in the next phase. Another notable characteristic is that 476

the speed profile is a bell-shaped curve resembling a Gaussian. This profile is distinctive 477

for open loop reaching motions, as found in [51]. The main difference is that, in this 478

case, the bell-shaped profile terminates before the whole motion is completed, while 479

in [51] the profile is extended until the end of the motion. This suggests that subjects 480

treat differently an open loop reaching motion from a targeted approach motion. 481

The moment when the acceleration reaches its global minimum indicates the end of 482

the First Phase and the beginning of the Second. 483

1.4.2 Second Phase 484

In the second phase, most of the preshaping is performed and the hand motion patterns 485

undergo important changes in speed and acceleration. This phase covers as average 486

12.03% ± 2.10% of the total motion across subjects. These features characterise this 487

phase: 488

� the hand speed stays within its global minimum range; 489

� the hand acceleration increases until its first peak; 490

� most of the preshaping is performed, as fingers’ MCP speed variability is 491

increasing. 492

In most trials in this part of the motion, the MCP speed joint variance is above 72% 493

of the total variability, suggesting that most of the preshaping is performed in this 494

phase. Indeed, the only other moment when the MCP variance is higher is in the fourth 495

phase. This indicates that subjects select the finger posture to be used for grasping by 496

the end of this phase. 497

Additionally, for each individual subject, the variability of his speed patterns 498

undergoes a bell-shaped increase, underlining that the hand approach pattern is also 499

adjusted in this phase. Therefore, different people perform this phase in different ways. 500

Additionally, in this phase, the subject adopts the actual hand approach pattern and 501

the finger posture to use for grasping. This suggests that the approach to grasp motion 502
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is decided and adjusted on the way rather than being preplanned. In next section it is 503

discussed whether the adjustment is reactive or intentional. 504

The moment when the acceleration reaches its first peak corresponds to the end of 505

the Second Phase. 506

1.4.3 Third Phase 507

In the third phase, the distance between the hand and the object reduces until the 508

approaching motion is terminated. This phase covers as average 30.05% ± 3.75% of the 509

total motion across subjects. The features of this phase are the following: 510

� the hand steadily increases its speed until settling down to 0 (±0.001) mm/sec; 511

� the acceleration slowly converges to a steady state value of 0 (±0.0001) mm/sec; 512

� the hand closes up the distance with the object to finalise the grasping, as the 513

fingers’ MCP joints speed variability change is minimal. 514

In this phase the finger MCP joint speed variance also greatly reduces until reaching 515

a steady or null speed in some cases. This indicates that the implementation of the 516

finger posture, selected in the previous phase, approaches its end until the fingers stop 517

moving. This happens just before the actual grasp, where the fingers are enveloping the 518

object, is performed. 519

The hand approach speed and acceleration also settle down to a more predefined 520

pattern since the variability of those two quantities greatly reduces. It can also be 521

observed that the speed pattern converges exponentially to a steady state value. Such 522

change is observed in all the trials, although the time required to reach the settling 523

value might change. This confirms that in this phase the approach pattern and finger 524

posture strategies are implemented since, by the end of this phase the hand is steady 525

and the fingers are not displacing, as they are ready to clamp the object. 526

The time when the acceleration and the speed settle down to the near zero steady 527

state is the end of the Third Phase and the beginning of the Fourth Phase. 528

1.4.4 Fourth Phase 529

In the fourth phase the approaching motion is completed and the object is constrained 530

in the hand and can be lifted for the subsequent action - hammering. This phase covers 531

as average 40.06% ± 7.18% of the total motion across subjects. The common 532

characteristic is that fingers’ MCP speed variance is changing as the final enveloping 533

and in-hand adjustments of the object is performed. Also the hand speed might show a 534

sharp increase in the final part as the object is lifted. Such increase marks the end of 535

the Fourth Phase. This phase is the only part of the motion that is different across 536

trials, and is not possible to establish any common feature in the hand motion patterns 537

as in some trials the speed was steady in others the speed had oscillatory components. 538

This phase coincides with the second part of our definition of grasp affordance, 539

where a specific grasp posture is employed on a precise part of the object. As such, the 540

characterisation of this phase is beyond the scope of this work. 541

2 Modelling of Approach to Grasp 542

2.1 Methodology 543

Different model types were fitted to the speed of approach distance. The reason for 544

using the speed of approach for modelling is that this paper aims at reliably describing 545
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the pattern of motion from human data and at providing a model as first hypothesis for 546

an object-independent robot controller. Since a robotic end effector can be velocity 547

controlled, a model based on the speed of approach can be easily implemented on a 548

robotic counterpart. 549

The approach distance data was divided in the four phases mentioned in section 1.4 550

and models up to the fourth order were fitted. As the approach to grasp part of the 551

grasp affordance is modelled, the fourth phase was not considered in the analysis. 552

224 trials were fitted one by one to estimate the approach distance models, while 28 553

trials were discarded as not suitable for model fitting due to missing data or noise. The 554

trials discarded are randomly distributed in the entire dataset and do not relate to a 555

specific subject or object. 75% of the dataset was used as training set and the other 25% 556

was used as a test set. To reduce the bias from the specific data collected, 10 different 557

test sets were randomly selected. The 10 test sets were used to perform cross-validation 558

and to evaluate the quality of the fit. The length of the trials was normalised for each 559

phase. In total, for each combination of model type and order, 1680 fits were performed 560

including all the test sets. The set of parameters of a model undergoing cross-validation 561

are the medians of the parameters resulting from the individual fits on the training set. 562

To evaluate the quality of fit, the R-squared value of the training set and root mean 563

squared error (RMSE) of the test sets were evaluated. Additionally, a measure of model 564

instability was defined. A model-order combination is considered unstable if the mean 565

RMSE is fluctuating across the 10 test sets. In other words: 566

U =

9∑
i=0

∣∣∣E[RMSE]i − E[RMSE]i+1

∣∣∣ (4)

Where E[RMSE]i and E[RMSE]i+1 are the overall mean RMSEs resulting from 567

the i-th and (i+1)-th test sets fitted to a given combination of model type and order, 568

and U is the instability index: the larger the less consistent is the model-order 569

combination. The measure of model instability is used to discard those models whose 570

performance was inconsistent due to randomness of the heuristic calculation of the 571

parameters. As the instability index is a measure of consistency, it is required to 572

evaluate the impact of randomly selected test sets on the fit quality. The assumption is 573

that if a model truly describes the natural phenomena it is less likely that it will 574

perform very differently on different combinations of the test set. The index privileges 575

models which show a similar RMSE score on all tests sets. To further guide the 576

selection, the mean of the RMSE across all the 10 test sets was also evaluated. This is a 577

summary of the model combination overall performance which can be used to identify 578

the worse performers, which are the model combinations with a lower overall mean 579

RMSE. The overall variability of the same value is also used to guide the selection if 580

models have similar scores. This criteria is also used to loosely enforce consistency over 581

different test sets. 582

A combination of model type and order was selected based on the following criteria: 583

� The R-squared of all available model combinations is compared and all models 584

which scored less than 0.7 are discarded due to poor fitting. 585

� The overall mean RMSE is compared across the remaining combinations, those 586

with RMSE larger than 0.0075 are discarded. 587

� The instability of each remaining combination is compared, models that score 588

greater than 0.0005 are discarded. 589

� If a clear winner does not stand out yet, worse performers are discarded. 590
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� Variance of the overall RMSE is assessed to provide hints to guide the selection at 591

this point. 592

� If two models score equally the combination with least parameters is selected. 593

� A simple model is also selected earlier in the process if other models with similar 594

scores have much more parameters. 595

Fig 7. Combined output of the model fitted to each phase: Gaussian, polynomial and
exponential. The model output (thick dark blue line) is overlaid on sample interpolated
trials, used for fitting. Each dashed plot represents a different subject approaching
different objects.

The thresholds and criteria chosen aimed at reducing the risk of selecting a model 596

which would overfit the data or which would perform very well because of a lucky 597

combination of trials used for training or testing. As such multiple factors are evaluated 598

and the selection often is a trade-off, since rarely there is a single model that is the 599

overall best. The most important criterion is the R-squared score as a low R-squared 600

indicates a poor fitting. This threshold was selected according to state of the art 601

machine learning practices. The thresholds for the RMSE and stability values were 602

selected experimentally to discard the models with very poor fitting performance. The 603

R-squared threshold was selected based on the variance of the data, in order to be strict 604

enough to discard bad fits but not too strict prevent over-fitting. Overall, it was 605

followed the Occam’s razor criterion [52], which privileges models with less parameters if 606

the performances are similar. Within a selected model combination, the actual instance 607

adopted as model for the first phase is the best RMSE fit across the 10 test sets. The 608

model types used in the fitting were pre-selected by observing the shape of the median 609

trial for each phase. A model type was selected either because the data was similar to 610

its canonical output or because other studies used that model. For example, if the data 611

did not show oscillatory components, the preliminary fit of a sinusoidal model to the 612

median data would already be too poor to justify a thorough examination. Moreover, 613

an oscillatory model would create jerky motions and unstable control, making it 614

unsuitable for a real-world implementation. The classes of model type selected for 615

fitting were Gaussian Mixtures (abbreviated to n-th order Gaussian) and Polynomials, 616

for all phases, and, additionally, Exponential models for the third phase. All the models 617

were intentionally selected in order to be expressed in closed form. The reason is that a 618

relatively simple model can be automatically optimised at compile-time, when coded in 619

software, or can be implemented easily in a reconfigurable hardware circuit (i.e. Field 620

Programmable Gate Array), providing high performances for limited costs [53]. For 621

each phase, the most reliable model is indicated in the table in bold, and a second best 622

model is reported in italics, if present. The latter is the best model if the requirement 623

on the instability index is relaxed. This can be interpreted an approximation of the 624

original behaviour since it has generally a simpler structure than the most reliable 625

model counterpart. As such, the models which comply to all the criteria specified are 626

called most reliable models and are the models discussed in the paper. The second 627

category of models, which ignore the instability requirement, are named approximated 628

models and information on the this category is provided as a reference and is discussed 629

in this section only. The optimal coefficients for each selected model combination are 630

shown in Table 2, while the complete fit is shown in Fig. 7. 631
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Table 2. Optimal coefficients of the models selected for each phase for the most
reliable and approximated models.

Coefficients Phases
First Second Third

Most Reliable Models
a1 1.62 10−3 0.41 10−4 −1.73 10−4

b1 26.18 N/A -0.7063
c1 4.95 N/A N/A
a2 5.77 10−3 −18.08 10−4 −30.89 10−4

b2 26.97 N/A -0.4122
c2 8.396 N/A N/A
a3 5.246 10−3 −30.16 10−4 N/A
b3 29.65 N/A N/A
c3 12.05 N/A N/A

Approximated Models
a1 −0.15 10−4 0.41 10−4 −5.18 10−6

a2 5.93 10−4 −18.08 10−4 5.59 10−4

a3 −3.92 10−4 −30.16 10−4 16.98 10−4

2.2 Model Validation 632

2.2.1 First Phase 633

The modelling of the first phase studied whether the approach velocity patterns were 634

more similar to a Gaussian, as described in [51], or to a polynomial and which 635

complexity for each model type is required to represent most reliably the used data. In 636

this respect, many variants of Gaussian and polynomial models were discarded. The full 637

details are shown in Table 3. The polynomial models were discarded from the model 638

combinations that fulfilled the criteria set in section 2.1. Those models were mostly too 639

unstable and inconsistently performing across different test sets or they performed 640

poorly. This confirmed that the most reliable representation of this pattern follows a 641

Gaussian. The best trade-off between complexity and reliability was a 3rd order 642

Gaussian model. This model has nine parameters and a stability index of 0.38, while 643

the alternative candidate, 4th order Gaussian model, has 12 parameters and a stability 644

index of 0.25. Following the Occam’s razor criterion, the best trade-off is the 3rd order 645

Gaussian model, since it saves 3 parameters at the cost of 0.13 stability, 0.04 points per 646

parameter. The result of the fit can be observed in Fig. 7. 647

Table 3. Summary of model fitting results of First Phase data. Model type-order
combinations with R-Squared less than 0.7 were omitted due to poor fitting. The
selected most reliable combination for the phase is highlighted in bold, the
approximated combination is highlighted in italics.

Type Order # Pars R2 E[RMSE]
(10−3)

Var
(10−5)

Instab.
(10−3)

Gaussian 2 6 0.78 7.07 1.50 0.59
3 9 0.79 7.22 1.46 0.38
4 12 0.81 7.14 1.59 0.25

Polynomial 2 3 0.84 6.90 1.89 0.92
3 4 0.93 8.75 2.50 4.67
4 5 0.97 7.27 2.00 4.96

The selected variant of the 3rd order Gaussian model is shown below, while the 648
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optimal coefficients are shown in table 2. 649

f(t) = a1 e
−
(

t−b1
c1

)2
+ a2 e

−
(

t−b2
c2

)2
+ a3 e

−
(

t−b3
c3

)2
(5)

2.2.2 Second Phase 650

The model fitting of the second phase studied whether the human patterns were more 651

similar to a Gaussian or a polynomial model and which complexity can appropriately 652

describe the data. The models admitted to the selection showed all a good RMSE 653

performance decreasing for some more complex variants of the models, as shown in 654

Table 4. The Gaussian models were all discarded due to instability and inconsistency 655

across different test sets, poor performance or too high complexity compared to the 656

polynomial model with similar performance. Within the polynomial models, the 2nd 657

order polynomial has shown to be the most reliable and simple version of polynomial 658

models but still showing a good R-squared performance on the training sets. Therefore 659

this part of the motion can be approximated with a polynomial: 660

f(t) = a1 t
2 + a2 t + a3 (6)

The optimal coefficients of this model are shown in Table 2 and the result of the fit 661

can be observed in Fig. 7. 662

Table 4. Summary of model fitting results of Second Phase data. Model type-order
combinations with R-Squared less than 0.7 were omitted. The selected combination for
the phase is highlighted in bold and is equivalent for most reliable and approximated
models.

Type Order # Pars R2 E[RMSE]
(10−3)

Var
(10−5)

Instab.
(10−3)

Gaussian 2 6 0.77 7.31 3.04 0.31
3 9 0.84 7.28 3.18 0.33
4 12 0.91 7.67 3.54 1.32

Polynomial 2 3 0.95 7.25 3.12 0.06
3 4 0.98 7.55 2.92 1.23
4 5 0.99 7.35 3.02 1.09

2.2.3 Third Phase 663

The nature of the motion in this phase requires a rapid convergence to near zero speed, 664

since the hand is quickly approaching the object to finalise the grasp mostly using the 665

fingers. For this reason, exponential models were also fitted. This can be used as an 666

assessment of how likely subjects were targeting the object with a quick reactive motion 667

stopping the hand on contact. The results of the fitting, shown in Table 5, demonstrate 668

that all the models admitted to the selection performed well in terms of RMSE on the 669

test set, therefore this measure was not a discriminant. The Gaussian and the 670

polynomial models were both discarded since they all obtained a too low stability score 671

despite their RMSE values being within range. Therefore the pattern is represented by 672

an exponential model of second order, since the first order variant obtained an 673

R-squared score on the edge of the minimal criteria for admission. It can be concluded 674

that subjects do approach the object with a quick and direct reactive motion rather 675

than with a planned motion as for the other phases. 676

The final Exponential model is shown below, while the optimal coefficients are 677

shown in Table 2 and the result of the fit can be observed in Fig. 7. 678
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Table 5. Summary of model fitting results of Third Phase data. Model type-order
combinations with R-Squared less than 0.7 were omitted. The selected most reliable
combination for the phase is highlighted in bold, the approximated combination is
highlighted in italics.

Type Order # Pars R2 E[RMSE]
(10−3)

Var
(10−5)

Instab.
(10−3)

Gaussian 3 9 0.69 4.49 1.28 0.46
4 12 0.71 4.46 1.14 0.55

Polynomial 1 2 0.69 4.41 1.19 0.28
2 3 0.85 4.29 1.23 0.65
3 4 0.93 4.70 1.04 4.41
4 5 0.97 5.01 1.21 6.56

Exponential 1 2 0.69 7.40 1.03 0.04
2 3 0.81 7.41 1.03 0.13

f(t) = a1 e
b1 t + a2 e

b2 t (7)

The structure of the motion is comparable with the step response of a second order 679

over-damped spring-mass-damper system, as the exponents of both terms are negative 680

and less than 1 as per definition. However, the steady state gain is not equal for both 681

terms but it differs by a factor of 10 for each exponential. This suggests that the 682

settling dynamics is similar to a second order system but the steady state differs. 683

However, in our case, once the data reach its steady state the fourth phase starts. 684

Discussion 685

It is commonly agreed that the approaching to grasp motion follows a pre-defined timed 686

plan, in terms of hand transportation and grip formation, which can be perturbed 687

within limits [54,55]. In this Section we contribute to this statement further. 688

It is worth observing that the first phase of our data has a bell-shaped form. This 689

result is in line with many findings such as [51] and [56]. Specifically, authors in [51] 690

also fitted a Gaussian model to their data as performed in this study, although the 691

complexity of the model was higher probably due to the fact that the whole motion was 692

involved. The study in [51] suggests that the reaching motion is an open-loop motion. 693

Our findings, however, demonstrate that this open-loop profile terminates before the 694

end of the motion. Marteniuk et al. [57] also observed a similar difference when subjects 695

were asked to reach to a point or approach to grasp for lifting the object. The authors 696

found that the hand decelerates longer for more complex tasks. Our findings also 697

confirm the difference between reaching to a point and approaching to grasp. 698

Indeed, the open-loop reaching part of the motion has a defined duration after which 699

the strategy of the approach motion is being defined. In this regards, the second phase 700

is the moment when the final approach and grasping patterns are finalised. In 701

agreement with Marteniuk et al. [57], this phase features a sharp deceleration whose 702

shape is common across subjects, possibly because they all performed the same task. 703

We found that the actual length of the phase is different for each subject and object 704

being grasped, although this might be also caused by contingent factors during the 705

experiment. Our results also found that most of the finger preshaping is performed in 706

this phase. This finding is in line with what is observed by [49] and it complements our 707

previous work [58] which describes how fingers are displacing for grasping. It is possible 708

to observe that the precise approaching to grasp strategy is decided by the end of this 709

phase. 710
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The last phase is the third phase where the decided grasp posture and approach 711

strategy are performed. Jeannerod [49], in a similar study involving approach to grasp 712

for transporting, also observed that subjects undergo a low-velocity phase consistently 713

at the same moment near the end of the motion. That study suggests that this phase is 714

functional to prehension and is not a corrective action. Our results add to this 715

statement. They suggest that the last phase is the only part of the motion which is 716

reactive and where the finger joint speed variability is minimal. This suggests that the 717

act of terminating the approach to grasp motion is a scripted mechanism. 718

The object-dependent phase of the approach motion, the fourth phase, possibly has 719

a role in grasping while approaching. In this phase the object is gripped and lifted as 720

the MCP joints are most active. Additionally, the fourth phase is the only part of an 721

approaching motion which is performed in different ways. It is possible to speculate 722

that the fourth phase might be involved in finalising the last details of a grasp 723

affordance, such as completing the shape of the grip, in agreement with the results 724

of [48]. In [48], the authors identified a common structure of the motion of the fingers 725

when reaching to grasp which varies greatly in the last moments of the motion, when 726

the object is about to be gripped. These results complement our findings on the 727

common structure of the approaching motion and the lack of similarities on its fourth 728

and last phase, demonstrating that a similar pattern can be observed in the motion of 729

the fingers as well. A more through analysis of the finger motions is required to 730

investigate how the grip is shaped in the fourth phase and relate it to approaching. 731

Additionally, it is worth to mention that some similarities can be observed between 732

the velocity profile of the first two phases combined and the velocity profile of subjects 733

reaching to grasp when their vision is impaired. Subjects with impaired vision have to 734

perform anticipatory motion control to successfully manipulate an object, as some of its 735

features, such as weight [59], are unpredictable. If vision is impaired unpredictably 736

during reaching to grasp objects of varying shapes [60], or if subjects are blinded when 737

reaching to grasp to pull an object [47], the speed profile differs from the that of 738

subjects reaching to grasp with full vision. In the above-mentioned studies, the reaching 739

motion was slower and the speed profile reached its peak earlier than when reaching 740

with no impairments. In our study, the initial parts of subjects’ speed profiles also 741

followed a similar structure, although no vision impairment was applied. A possible 742

explanation could be that both in [47,60] and in our study subjects were asked to 743

perform some manipulation rather than simply reaching. In our case, complex finger 744

control was required to complete the action, while in the other studies’ case fingers were 745

used to determine haptic cues on the object used. This might influence the speed profile 746

when reaching the object. 747

[61] and [62] observed that grasping kinematics and kinetics are independent 748

activities that are planned in parallel when approaching to grasp. Our study agrees on 749

the point that grasping and approaching seemed to be parallel operations. As the 750

approaching is performed, the motion type changes from planned, to reactive, to object 751

specific, as the grasp was about to be finalised. It can be speculated that the grasping 752

finalisation gains an higher importance than approaching near the end of the motion, as 753

the type of control changes. Our study is also in agreement with the findings of [61] 754

that explicit (visual) knowledge of the object centre of mass allows subjects to modulate 755

the approach to grasp. However, some objects, like the hammer, were familiar for the 756

subjects, others, like the carton box, were of unpredictable weight and assumptions 757

could be made on the characteristics of some objects (e.g. it is unlikely to grasp a full 758

cup of coffee). It is therefore difficult to draw a conclusion on whether prior knowledge 759

of the object or visual cues have a role in shaping the approaching to grasp overall 760

motion structure. An additional study would be required to rule out the contribution of 761

implicit or explicit knowledge when planning the approaching to grasp action. 762
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The presented findings support the hypothesis that the approach to grasp motion 763

follows mostly a planned strategy, although the last phase of the motion is a scripted 764

and reactive component. Our results also support the hypothesis that the finger motion 765

is synchronised with the hand motion, as most of the preshaping is performed in a 766

specific phase. 767

Conclusion 768

In this study, we defined two components of a grasp affordance: an initial approaching 769

to grasp phase, and a second phase where the desired grasp pattern is implemented. 770

The approach to grasp for hammering was studied, collecting data from 9 subjects who 771

used very different objects, in different orientations, as hammers. The collected data 772

was analysed and mathematical models, reliably describing the motion, were defined. 773

Our findings show that subjects share a common approaching to grasp pattern. Such 774

pattern has a defined structure of three phases that can be reliably modelled mostly as 775

a planned and intentional motion. The first two phases of the motion are part of a 776

planned motion, while the third phase follows the dynamics of a spring-mass-damper 777

system and is a reactive motion. The final action of grasping is performed in a fourth 778

phase which does not have a common structure across subjects. We described the role 779

of each of the first three phases in the discussion. 780

The proposed models of approaching can be used to provide a modular control 781

policy for an approach motion controller for grasping to hammer. Since the overall 782

model is structured in three individual models, it is possible to substitute one of the 783

proposed model with an alternative one extrapolated from the data collected in this 784

study. The control policy itself can be used to control a robotic end effector. An 785

algorithm can be used to post-process the output so that it is suitable for a specific 786

robotic control technique [63]. For example, the model’s profile could be used to shape 787

an attractor landscape which would drive the hand towards the object’s centroid [64]. 788

This will reduce the use of geometrical features of the object for the hand control. 789

Additionally, the proposed approach model can be used as a starting point to derive 790

other control policies for similar actions. For instance, it could be possible to derive a 791

control policy for grasping to insert action, since inserting and hammering are similar. 792

The new policy could be derived by adjusting the parameters of the proposed model 793

with trial and errors using any reinforcement learning algorithm [65]. As future work, 794

the proposed models and the learning algorithm will be implemented on a real robot as 795

approaching policy. 796

The proposed approach is generalisable to different grippers, from traditional hard 797

robotic hands to soft hands and even industrial end effectors, such as suction cups or 798

soft manipulators [66]. Such flexibility is possible because the approaching models are 799

using the centre of the end effector to control the hand, abstracting the specific details 800

of the hand’s kinematics. However, soft underactuated hands [67,68] are best suited to 801

the proposed approach. The nature of those hands allows to passively shape and adapt 802

the grasp posture while gripping the object [69], taking advantage of the physical 803

constraints imposed by the environment [70]. The mechanical design of such hands and 804

the elasticity of their tendons [71] protect the end effector from breaking in case of 805

involuntary collision with a surface or the object. Therefore, soft hands can compensate 806

for an imprecise approaching strategy as they adapt their shape or push the object 807

in-hand when the grasp is executed [72]. Additionally, pairing a soft hand with our 808

approach could replace the need for a model for phase 4, the object-dependent part of an 809

approaching to grasp motion. It is possible to speculate that humans adapt their hand 810

posture at grasping time to take advantage of the environment [73], rather than only 811

relying on a pre-encoded set of grasp affordances. Soft hands offer a similar capability 812

PLOS 20/27



by design. Hence, if the environment does play a role in adjusting the grasp pattern, a 813

soft hand could provide a model-free grasp finalisation to complement our model. 814

Additionally, such pairing could drastically reduce the use of ad-hoc precomputed grasp 815

affordances or approaching profiles [74]. Also, the computational complexity of object 816

perception algorithms [75], which often rely on expensive and power intensive ad-hoc 817

processors (i.e. Graphical Processing Units), would be simplified since only an 818

approximate shape, position and orientation would be required to approach and grasp 819

an object. Hence, less prior information on the characteristics and outlook of an object 820

would be required, allowing the robot to better operate in unstructured environments, 821

such as houses or public venues, where the used objects are too many to be all modelled. 822

It is worth mentioning that this paper analyses only the distance between hand and 823

object, but the relation between hand and object orientations is not discussed. This 824

choice is justified by the fact that understanding the fundamental principles of hand 825

trajectory generation in human approaching is the first step required to translate those 826

principles in approaching to grasp for robotics. This would give the opportunity to 827

reduce the need of prior knowledge of the proprieties of the manipulated object, which 828

is an unsolved challenge in robotic manipulation. However, the hand-object orientation 829

relation should also play a role in defining the structure of approaching to grasp as it is 830

expected to influence the second part of a grasp affordance as well. Such data is 831

currently being analysed and will be presented as future work in a dedicated study. 832

Preliminary insights on this subject, are presented in [63]. It was found that the actual 833

length of the phases is different from subject to subject. This factor is more significant 834

for studies of human behaviour than for robotics as the duration of an execution is often 835

configurable and influenced by technical details. Therefore, this can be explored in 836

future research using the collected dataset. Additionally, the current study analyses 837

direct approaching to grasp patterns. There might be alterations to the patterns in 838

presence of obstacles, constraints or other impairments such as lack of vision or tactile 839

sensation. Also, a different action, or the same action involving flexible or deformable 840

objects, might have a different structure that might need to be modelled differently. 841

Those factors would require a separate study. 842

Finally, it shall be underlined that the models proposed in this paper are the most 843

reliable representation of the data. This means that it is expected that the selected 844

models have the same good performance for any input as they are meant to describe the 845

phenomena. A robotic implementation might not require the same level of precision, as 846

the objective is to replicate the functionality of the human motion. As such, simpler 847

polynomial versions of the proposed models can be adopted as well as compared against 848

the high precision ones proposed in this paper. Additionally, a criterion to switch 849

between models of different phases is needed for the motion to be smooth. In this sense, 850

it is possible to interpolate the last point of one model and the first one of the 851

subsequent model. The validity of such criterion has to be validated in a robotic 852

implementation, and the approach was tested in simulation in [63]. These analyses will 853

be part of future works. 854

The proposed models and characterisation of grasp affordance, in terms of hand 855

speed and acceleration when approaching an object for using it, underline the 856

importance of the actual action being performed over the features of the object being 857

handled. Since the approaching pattern is general and object independent, only a 858

different action would require a different grasp affordance pattern. As such, the action 859

to be performed, rather than the manipulated object, should be the discriminant in 860

deciding the specific grasp posture and approaching motion to be employed among 861

many. 862
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74. Vahrenkamp N, Koch E, Wächter M, Asfour T. Planning High-Quality Grasps
Using Mean Curvature Object Skeletons. IEEE Robotics and Automation Letters.
2018;3(2):911–918. doi:10.1109/LRA.2018.2792694.

PLOS 26/27



75. Rünz M, Agapito L. MaskFusion: Real-Time Recognition, Tracking and
Reconstruction of Multiple Moving Objects. CoRR. 2018;abs/1804.09194.

PLOS 27/27


	Methodology
	Experimental Protocol
	Data Processing
	Statistical Analysis
	Characterisation of Approach Patterns
	First Phase
	Second Phase
	Third Phase
	Fourth Phase


	Modelling of Approach to Grasp
	Methodology
	Model Validation
	First Phase
	Second Phase
	Third Phase



