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Abstract

This paper presents experimental evidence for the existence of a set of unique force
modulation strategies during manual soft tissue palpation to locate hard abnormalities
such as tumors. We explore the active probing strategies of defined local areas and
outline the role of force control. In addition, we investigate whether the applied force
depends on the non-homogeneity of the soft tissue. Experimental results on manual
palpation of soft silicone phantoms show that humans have a well defined force control
pattern of probing that is used independently of the non-homogeneity of the soft tissue.
We observed that the modulations of lateral forces are distributed around the mean
frequency of 22.3 Hz. Furthermore, we found that the applied normal pressure during
probing can be modeled using a second order reactive autoregressive model. These
mathematical abstractions were implemented and validated for the autonomous
palpation for different stiffness parameters using a robotic probe with a rigid spherical
indentation tip. The results show that the autonomous robotic palpation strategy
abstracted from human demonstrations is capable of not only detecting the embedded
nodules, but also enhancing the stiffness perception compared to static indentation of
the probe.

Introduction 1

Palpation with a robotic device or artificial tactile exploration of soft viscoelastic and 2

non-homogeneous objects is an important area of study for various fields such as 3

medical and virtual reality applications [1–3]. In the scope of our attention is the 4

implementation of tactile and haptic feedback for Robot-assisted Minimally Invasive 5

Surgery (RMIS) that is typically performed using three-dimensional visual feedback 6

only. In contrast, during open surgery, surgeon has direct access to internal organs and 7

is able to perform soft tissue palpation to identify harder abnormalities, such as tumors. 8

Several studies have underlined that the addition of tactile feedback during RMIS 9

improves the performance of the surgeon and the clinical outcomes [4, 5]. 10

The development of various stiffness and force sensing probes for RMIS [6] indicates 11

the increased interest and the need for tactile systems during surgical applications. 12
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However, despite the active development of the field of medical tactile sensing, robotic 13

palpation, or as named in this paper artificial palpation, is not yet implemented for 14

RMIS. The detection of hard abnormalities and measurements from tactile devices - 15

sensors that obtain tactile information from the target object - should be reliable and 16

repetitive in order to be used for in-vivo medical applications. However, it is difficult to 17

fulfill such requirements due to variability of conditions introduced by a surgical 18

environment. That is caused by the viscoelastic nature of soft tissue as well as by 19

external factors, such as movement of internal organs and flows of liquids. 20

The improved design of a tactile probe potentially can lead to better probing results. 21

The current state-of-art research shows that various designs and transduction principles 22

are employed and tested during the development of tactile devices for tissue 23

examination [7–11]. Alternatively, it is possible to study manual palpation techniques 24

that are broadly used during open surgery or physical examination to access the 25

mechanical properties of the organs. 26

We propose that one of the possible directions is the development of behavioral 27

guidelines in order to maximize the efficiency of probing devices during artificial tactile 28

exploration. In our previous works [12, 13] manual palpation techniques were studied to 29

understand the optimal control strategies that can be used by tactile devices to detect 30

hard nodules inside a soft tissue more accurately. Two force-velocity modulation 31

strategies of hard nodule detection were outlined [13]. The first strategy relies on the 32

displacement and kinesthetic feedback perceived with the finger, while the second relies 33

mostly on force feedback. These studies, inspired by manual palpation techniques, have 34

shown the importance of the applied force and velocity modulations during 35

unidirectional manual examination of a soft tissue. In the present work, it is important 36

to explore the possible pattern of force modulation for the case of exploration of a given 37

point. Therefore, the aim is to determine whether there exists a specific force control 38

strategy that is used to detect harder areas in a soft environment. 39

Palpation techniques can be divided into three main strategies, according to the 40

classification presented in [14], namely global examination, local examination and 41

applied finger pressure. These techniques are often combined to achieve the best 42

possible result. Global movement is applied as a general scanning and assessment 43

technique. For further examination it is necessary to explore those areas more 44

thoroughly. Therefore, the local finger movement technique is applied and performed 45

only within a selected section. This type of palpation helps physicians to understand 46

the shape and depth of an abnormality, and can be applied as tapping, sliding or 47

vibration of the tissue. The third palpation technique, corresponds to the average 48

intentional finger pressure applied during the palpation procedure, such as light and 49

deep palpation [15]. Light pressure is mainly used with global scanning to access the 50

general mechanical properties and temperature of the organs. Indentation of this type 51

of palpation does not exceed 2 cm and pressure is as light as possible. Deep palpation is 52

performed with heavier pressure, mainly used for local finger movement, with an 53

indentation of about 4 to 6 cm, and is used to evaluate the stiffness, size, contours and 54

shape of the formation or of the organ [16]. In this work we present studies on manual 55

palpation that is focused on deep palpation for local examination patterns. Therefore, 56

we look at the characteristics of force modulations applied for a single defined area. 57

The related studies of palpation techniques also indicate that to understand the 58

mechanical properties or stiffness of soft harder objects one needs to apply specific 59

examination behaviors. For instance, the importance of global examination technique in 60

the initial object exploration is highlighted in [17,18], and work in [19] discusses the 61

effectiveness of force and depth control approaches during local palpation. 62

There are several examples when the properties of a soft medium are measured using 63

active modulations of applied force, such as vibrations. One of the possible technologies 64
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to measure soft tissue stiffness during RMIS is a resonance-frequency based method. 65

For instance, works in [20,21] are based on the combination of linear variable 66

differential transducers (LVDT) with mass-spring mechanism. The system measures a 67

shift of accruing resonance frequency during the indentation of the probe inside a soft 68

tissue. Thus, it is possible to obtain viscous and elastic properties of a soft tissue. 69

This paper focuses on understanding some of the important aspects of tactile 70

exploration techniques applied during localized examination of a soft environment. In 71

particular, we focus on local active tactile probing control strategies that involve force 72

control strategies, and are used for one-point palpation or probing of a soft 73

non-homogeneous environment. The knowledge and understanding of these behaviors 74

can lead to the improvement of the palpation-based artificial tactile examination, as 75

well as to contribute to the general understanding of force controlled robotic contact 76

exploration. As part of the validation experiments for this work, we implement the 77

autonomous palpation based on the obtained behaviors from human demonstrations. In 78

this way, we validate the feasibility of the proposed methodology for remote tactile 79

examination. The autonomous robotic tactile examination is a topic that becomes 80

popular in recent years. For instance, work in [22] presents remote palpation using 81

machine leaning approaches and studies in [23] describe the autonomous surface 82

recognition using a vibration signal. 83

Based on the relevant literature and our previous findings, we can formulate the 84

following questions to be discussed: 85

1. Whether there is a generic template or pattern of applied force that is used to 86

probe a localized area of viscoelastic non-homogeneous environment; 87

2. Whether there exists a mathematical model that can represent the pattern of 88

force modulation; 89

3. And consequently, whether a robotic probe of the mechanical design different from 90

the shape of the human finger can achieve a substantial level of palpation 91

effectiveness only by following the pattern found from human demonstrations. 92

Further on, Section II describes the methodology of palpation studies; in Section III 93

the experimental results on soft tissue phantom palpation are presented. The force 94

control strategies are implemented using autonomous robotic palpation in Section IV. 95

Section V discusses the findings of the paper. 96

Methodology 97

Subjects and Experimental Protocol 98

In this paper we are particularly interested in understanding general force control 99

principles for tactile exploration of soft environments, such as artificial palpation during 100

RMIS. These studies aim to produce the results that can be generalized for various 101

applications. The work carried out for this studies was approved by the King’s College 102

London Biomedical Sciences, Dentistry, Medicine and Natural & Mathematical Sciences 103

Research Ethics Subcommittee (BDM/11/12-84). Participants provided their written 104

consent to participate in this study. The consent procedure was approved as part of the 105

studies by the ethics committee. 106

In total we have obtained and analyzed 420 trials of palpation recording from seven 107

palpation areas and twelve subjects performing five trials. Five out of twelve subjects 108

had experience with clinical manual palpation. Previous research indicates that there 109

might be a difference in palpation behavior between experts in palpation and 110

novices [13,24]. However, the above mentioned studies analyzed palpation applied 111
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across larger area involving finger displacement over the tissue. In this work, we also 112

evaluate whether the applied dynamics of force modulation during palpation of the 113

localized area is different for expert subjects. 114

The participants were asked to explore the appointed areas of an artificial soft tissue 115

phantom (Fig 1). Six out of seven areas contained an embedded nodule. During 116

palpation experiments the area of a nodule was covered with an opaque film, and the 117

target palpation area (10 mm2) was highlighted with a marker so that palpation 118

movement is centered above the nodule. The film was made from textured double 119

polymer coated latex that additionally helps to reduce unwanted sliding motion of the 120

finger. Hard nodules of different diameters were fabricated to simulate tumors – 3, 6, 9, 121

12, 15 and 18 mm. The palpation area with no nodule was used to study whether the 122

absence of the nodule changes the behavior of force modulation during palpation. All 123

the nodules are embedded on the same depth (5 mm) from the surface, as the 124

perception of the tactile signal from different sizes and depths is coupled. A small 125

nodule embedded close to the surface can produce the same signal as a large nodule 126

embedded deep in the medium. In such way the results can be generalized for different 127

depths as well. The sizes of nodules correspond to the cancer stage T1, according to 128

TNM classification [25]. To prevent the effect of learning, subjects were asked to explore 129

embedded nodules in a pseudo-random order. In addition, subjects were given time to 130

get familiar with the task, performing three palpation trials on a different phantom 131

tissue. Subjects were asked to estimate the depth and the diameter of an embedded 132

nodule. This question was asked in order to stimulate people to apply the most effective 133

natural exploration pattern using one finger palpation, and the answers given by 134

subjects were not analyzed in the scope of this work. Subjects were instructed to 135

palpate a single site on the silicone phantom, and to avoid sliding movements. They 136

were free to explore the designated area by applying lateral and normal movements. It 137

was observed that all subjects intuitively have used their index finger for palpation. 138

Fig 1. Experimental setting used for studies of local palpation behavior.
Coordinate frame reflects lateral forces (Fx and Fy) and normal force (Fz) applied by
subject’s index finger.

To comply with the common natural stiffness ratio in healthy tissue tumor, artificial 139

soft phantoms with hard nodules were fabricated [26]. According to the previous 140

studies [27] transparent silicone gel RTV6166 (Techsil Limited, UK) mixture ratio 4:6 141

and 900 mPa·s viscosity was used to create soft artificial tissue. Hard transparent 142

nodules - artificial tumors - were embedded in the soft phantom tissue. To fabricate the 143

spherical nodules, hard silicone rubber compound RTV615 (Techsil Limited, UK), ratio 144

10:1 and 4000 mPa·s viscosity was used. Four silicone phantoms, with two nodules of 145

different diameter each, were created to study the forces applied during exploration 146

movement, including the one that was used for the preliminary studies. The distance 147

between two nodules of the same phantom was 50 mm. In case of a damage of the 148

phantom or an internal displacement of the nodule, new silicone phantom was used. 149

Data Measurement 150

The experimental setup (Fig 1) was designed to measure the applied force during 151

palpation of an artificial soft tissue. Three-dimensional force readings were recorded 152

using 6 degrees-of-freedom force and torque sensor (Mini 40, ATI industrial automation). 153

The resolution of normal force is 0.01 N and the sensing range in that direction is ± 30 154

N. The range of lateral forces is ± 10 N with resolution 0.05 N. The sampling frequency 155

of the sensor is set to 1000 Hz. In order to smooth high frequency peaks, a moving 156

average filter was used with the span of 21 data points that is equivalent to low-pass 157
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filter. The sensor was mounted under a support base plate that holds the phantom 158

tissue. After the placement of the silicone phantom on the plate, accrued forces and 159

torques were biased to zero. The sample of artificial tissue was placed in such a way 160

that the area of examination is located just on the top of the six axis force and torque 161

sensor. As the silicone phantom was transparent the alignment of the nodule was 162

implemented visually, using the top view. As it is mentioned above, the area of the 163

nodule was covered with an opaque film. During palpation, the silicone block was stably 164

attached to the base under its own weight, and any sliding or bending was avoided. 165

To observe the variability of the force measurements for three force components 166

across subjects and all trials, standard deviations of normalized values were analyzed. 167

Measurements were normalized by the maximum value to the range from zero to one. 168

For statistical analysis, a Kolmogorov-Smirnov test was used to check if the data is 169

distributed normally.Analysis of variance (ANOVA) and two-way t-tests were used to 170

test statistical significance of palpation factors that were considered significant, if the 171

null hypothesis was rejected with a 95% confidence level (p <0.05). Repeated measures 172

design of statistical analysis was applied for the obtained data, as it is used to evaluate 173

different factors at the same time. Seven locations of palpation (different diameters of 174

the nodules), as well as five trials performed by each subjects are within-subjects 175

variables. The palpation experience of participants (experts and novices) is between 176

subjects factor. The dependent variables that were tested are as follows: standard 177

deviation of lateral and normal force, magnitude and frequency of lateral forces. 178

Within-subject and between subject factors were always considered for the ANOVA 179

test where it is applicable. A post hoc Tukey honest significance test was used for the 180

correction of multiple comparisons. 181

Analysis of the Applied Forces during Palpation 182

Variability of Force Magnitude 183

To achieve a better understanding of the ways humans detect hard nodules in 184

viscoelastic environments, modulations of applied normal and lateral forces are 185

evaluated separately. 186

Fig 2 reflects the histograms showing the variability of standard deviation values for 187

three force components for all trials. Bin width for the histogram plots was selected 188

based on Freedman-Diaconis rule. The magnitude of lateral forces (Fx and Fy) is kept 189

relatively at the same level with the average standard deviation σ = 0.04 (for 190

normalized force values) and the mean magnitude of 1 N (for original force values). In 191

addition, the deviation of lateral forces did not depend on the diameter of the nodule 192

(F3,416 = 0.11, p = 0.73 for Fx, and F3,416 = 0.43, p = 0.57 for Fy). Conversely, the 193

normal force has higher standard deviation (σ = 0.16) and the mean magnitude (3.2 N), 194

and depends on the diameter of the nodule (F3,416 = 4.07, p <0.005) and subject 195

(F3,416 = 5.23, p <0.0001), both for experts and novices. A post hoc analysis showed 196

that the performance of one novice subject differs significantly (adjusted p-value: p 197

<0.01); the influence of any diameter of the nodule is not significantly different from 198

the other nodule. Therefore, this might suggest that subjects predominantly use 199

normal force to search for hard nodules in soft tissue compared to lateral forces. 200

Fig 2. Histogram of standard deviations across all trials for normalized
measurements.
a) Lateral force Fx, b) lateral force Fy, and c) normal force Fz.
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Modulations of Applied Force 201

Lateral Forces 202

To understand the possible patterns of modulation of lateral forces, Fx and Fy 203

measurements were analyzed. These two forces are mechanically related as the force 204

modulation is performed on the same plane. The correlation analysis was carried to 205

support this interpretation. According to this analysis, 94% or 395 trials have significant 206

correlation with mainly negative trends (p <0.05), as it is shown in Fig 3. This confirms 207

the fact that the two forces are inversely related. The combined lateral force forms an 208

ellipsoid because of the morphological constraints of a human finger. As it is shown in 209

Fig 4, the motion is limited for one direction because of the distal joint of the finger. 210

Fig 3. Histogram of correlation coefficients for measurements of two
connected lateral forces Fx and Fy.

Fig 4. Constraints of the finger motion during single point palpation. For
Fx (direction is chosen for this example), the finger can move freely in both directions,
but in the case of Fy (direction is chosen for this example), the motion is limited by a
finger joint.

To characterize the magnitude of lateral forces in one variable, the area of a fitted 211

ellipse (Fig 5) was used. Different combinations of semi-major and semi-minor axes can 212

lead to the same area of an ellipse, but as both of the forces are correlated, this does not 213

influence overall analysis.. Fig 5 displays the distribution of magnitude of lateral forces 214

for one selected subject and one trial. The fit of the ellipse was implemented using 215

custom MATLAB function ellipse fit [28] that is estimating ellipse parameters using 216

least square method. 217

Fig 5. Distribution of lateral force with fitted ellipses (red dashed line) for
one selected subject, one trial, for different nodules a) to g): Empty, 3, 6,
9, 12, 15 and 18 mm, respectively.

To check if it is possible to model the relationship between the nodule diameter and 218

the magnitude of the lateral force, characterized by the area of an ellipse as a curve, 219

linear regression analysis was used. According to the evaluation of the coefficient of 220

determination for polynomials of different orders, the mean order of best fit is as high as 221

3.7 ± 1. In addition, the results of statistical analysis show that the magnitude of 222

lateral forces is independent with respect of the nodule diameter and the preferences of 223

the subject (F3,416 = 0.24 , p >0.05, for both subject groups separately, and all subjects 224

together). 225

Lateral forces follow the sinusoidal pattern, and Fig 6 displays the distributions of 226

the applied frequencies for all subjects. Frequency is calculated as a mean value for each 227

trial. The applied frequency of the lateral forces is not influenced by subject preferences 228

and experience (F3,416 = 0.81, p = 0.38), by the diameter of the nodule (F3,416 = 0.24, 229

p = 0.66), or by the number of selected trial (F3,416 = 0.055, p = 0.81) . Thus, it is 230

possible to identify a specific bandwidth of frequencies for lateral forces that is used 231

during exploration of the given environment that has the mean value of 22.3 Hz. It is 232

possible to assume that there is a stereotypical force modulation frequency used by all 233

subjects. The developed frequency of force modulation might occur due to the natural 234

constraints of human hand ligaments in combination with the given viscloelastic 235

environment [29]. 236
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Fig 6. Distribution of frequency for the modulation of lateral forces for
different probing locations for all subjects.

Normal Forces 237

Next step of the analysis is to understand whether the modulations of normal force are 238

random or follow any specific pattern during the exploration. The relationship of normal 239

force in respect to lateral is studied using correlation analysis. It was found that there is 240

a significant negative correlation (mean value equals to -0.45) between the magnitude of 241

lateral and normal forces (p <0.05 for 93% of all trials). This indicates that the probing 242

strategy includes both modulation of lateral and normal forces. This is taken into 243

account during the development of an autonomous robotic palpation, described later. 244

As it was observed in the previous sections lateral force follows fixed modulation, as 245

there is no significant variation of lateral forces among subjects and across trials. 246

Therefore, it is possible to conclude that the normal force can be modeled separately. 247

Normal force can be the main force vector that is used to produce a stiffness feedback 248

to detect an embedded hard formation. In the next subsection the mathematical 249

representation that can be used to model the normal force is studied. 250

Modeling of the Modulations of Normal Force 251

Observations of the behavior of the applied normal force show two main patterns used 252

by subjects - sinusoidal and ramp like modulation of the force with relatively short 253

convergence time. It was noted that all subjects were consistent in the choice of the 254

pattern for all trials for each nodule location. The sample profiles of normal forces 255

observed from different randomly selected subjects using the two types of profiles are 256

shown in Fig 7 - sinusoidal is shown in red dotted lines and step-like is shown in black 257

solid lines. Although, two separate patterns can be observed, the goal of this work is to 258

determine whether it is possible to find one generic pattern that describes the 259

modulations of normal force. Typically, human behaviors can be characterized using 260

forward predictive models [30]. In addition, the empirical evaluation of data excludes 261

the possibility of linear time-dependent modeling. 262

Fig 7. Sample profiles of normal forces for sinusoidal (red dotted lines) and
step - like response (black solid lines) from diffident subjects.

One option is to model the transient behavior as a Markov decision process with the 263

steady state treated as an absorbing state. However, we note that the settling time ts to 264

an absorbing state in this case is just 3.3 seconds. The value was calculated using the 265

second largest eigenvalue λ2 of the probability distribution matrix: ts = 1/(1− λ2) [31]. 266

The settling time is too short to be modeled as a stochastic decision process. Therefore, 267

we focus more on the steady state behavior in this study. For the validation of the 268

mathematical model, the experimental data is split into 80 % of training data and 20% 269

of the validation data. 270

In this section both reactive and predictive models are tested. In the first case it is 271

assumed that subjects are planning the applied stress using previously perceived 272

information about stress values, while for the second case the estimated or predicted 273

stress is used. The autoregressive model can be defined with the following equation: 274

Xt = c+

n∑
i=1

aiXt±i + εt (1)
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Table 1. Selection of Order Number for Autoregressive Model

Order Number Reactive model,
p-value

Predictive
model, p-value

One vs. Two p < 0.0001 p < 0.0001

Two vs. Three p = 0.38 p < 0.05

Three vs. Four p = 0.76 p = 0.34

Four vs. Five p = 0.84 p = 0.63

Five vs. Six p = 0.98 p = 0.74

where ai are the autoregression coefficients, εt is white noise, c is constant Xt is the 275

stress output, t is the sampling step, and n is the model order. In our case the constant 276

c is equal to zero. In case of (t+ n) the model is predictive, in the case of (t− n) - 277

reactive. To understand the order of the autoregressive model for both cases, the Akaike 278

Information Criterion (AIC) was used. To statistically validate and choose the model 279

order, non-parametric Wilcoxon rank sum test was implemented across AIC values for 280

different orders. This test is equivalent to Mann-Whitney U-test and is used to test 281

whether the rank of related samples is different. The AIC values were calculated per 282

model across the entire validation data set. Pairing between model orders was used to 283

evaluate the best model order number. The Table 1 below reflects p-values for reactive 284

and predictive models for different orders. The high p-value between higher orders 285

indicates low information gain for such change. Based on these results, it can be 286

concluded that the modulation of normal force can be best described using either a 287

second order reactive model (p <0.001), or a third order predictive (p <0.05). 288

Further on, the coefficients of the autoregressive model were obtained. Stochastically 289

distributed coefficients obtained from the individual fitting are the result of the learning 290

phase. To estimate these values, centroids of the distribution of coefficients were used. 291

The coefficients of the second order reactive model were estimated as: a0 = 1, a1 = 292

-1.706, a2 = 0.721. The predictive model of the third order can be characterized by the 293

following coefficients: a0 = 1, a1 = -1.980, a2 = 0.819 and a3 = -0.164. The 294

autoregressive model was applied for both patterns, which are mentioned in the 295

previous section - sinusoidal and step-like. 296

Two obtained models were tested on the validation data, using costs of normalized 297

root-mean-squared error (NRMSE) as a measure of the goodness of fit. This criterion is 298

a non-dimensional version of root-mean-squared error (RMSE). NRMSE allows to 299

compare data of different dimensions dividing RMSE by the range of the observed data. 300

The model produces a perfect fit if the cost criteria of the validation data is 100% and 301

lower values indicate a decreasing fit. . In this study, we use a threshold of 70% to 302

determine an acceptable fit The relative comparison is used to select the appropriate 303

model. 304

It was found that reactive model produces a good fit up to 20 ms prediction horizon. 305

Fig 8 displays the corresponding average cost values for reactive autoregressive model 306

for prediction horizon 5 to 25 ms. The prediction horizon shown in this figure is 307

calculated for the estimation of each next step. The frequency of the force data is 1000 308

Hz. Thus, each time frame is 1 ms long. On the other hand, a predictive model is not 309

able to produce good fitness results. The average cost value for prediction horizon 5 ms 310

is 95%. However, the increase of horizon results in bad fitting below 60 %. Therefore, 311

we can conclude that the data of normal force can be best explained with the second 312

order reactive model. 313

PLOS 8/19



Fig 8. Histograms of prediction horizon and costs of NRMSE for second
order reactive model, 100% assumes perfect fit.

Robotic Implementation of the Algorithm for Local 314

Palpation 315

To validate whether the obtained reactive model of force modulations can be used 316

during artificial palpation, experiments were performed using a robotic setup. The goal 317

is to verify if the human-like palpation can be replicated during robotic palpation, and if 318

this type of artificial palpation can enhance the stiffness perception from the hard 319

embedded nodules. In particular, it is important to verify this approach for exploration 320

of the nodules that are difficult to perceive, such as very small or deep nodules. For the 321

prediction of the behavior of the normal force, a second order predictive autoregressive 322

model was used according to the findings of the human experiments. 323

Experimental Setup 324

To perform autonomous robotic palpation, a tactile probe was attached to the robotic 325

arm Fanuc M-6iB with R-J3iB controller. The robot arm has 6 DoF and ± 0.08 mm 326

repeatability of the motion. Tactile probe has a spherical indenter, 8 mm in diameter. 327

The position of the probe is measured from the position of the end effector of the robot 328

using forward kinematics. A commercially available force and torque sensor NANO17 329

(ATI industrial automation, force resolution 1/320 N) was used to measure applied 330

forces during probing. The probe is positioned on the surface of the silicone in the 331

desired location before palpation. The maximum possible indentation depth of the 332

probe is 6 mm. The palpation algorithm autonomously controls the modulation of the 333

applied normal force, but not the indentation depth. The safety threshold is needed to 334

avoid breakage of the tissue or of the probe. In addition, it is required to preserve the 335

linear elastic limit for the silicone phantom [32] to obtain correct stiffness values. Fig 9 336

displays the arrangement of the experiments. 337

Fig 9. Experimental setup to validate autonomous palpation based on force
modulation strategy.

Design of Validation Experiments 338

In the presented work the aim is not to mimic human behavior, but to understand 339

patterns of human palpation for one localized area, and subsequently to implement and 340

to adapt the behavioral pattern for robotic implementation. The target of the validation 341

experiments, described in this section, is to determine whether the outlined 342

mathematical model of human behavior can be implemented in robotic applications. It 343

is required to compare the performance of the proposed force-based modulation strategy 344

with simple indentation-based or passive palpation, such as in [33], when the stiffness is 345

measured after the indentation of the probe into material. 346

The Young’s or Elastic modulus is used to evaluate the perceived stiffness values 347

during the autonomous palpation. It is reported [34] that for a spherical indentation tip 348

and a small indentation depth, the Young’s modulus of soft tissue can be calculated as 349

follows: 350

E =
3f(1 + v)

8din
√
rdin

(2)
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where, E is the Young’s modulus, v is the Poisson’s ratio, f is the normal interaction 351

force, r is the radius of the indenter, and din is the indentation depth. Poisson’s ratio 352

for the assumed incompressible soft tissue is 0.5. 353

For this experiment silicone phantoms with hard nodules of different diameters are 354

used. Similarly to studies with human subjects the diameters were chosen to be 3, 6, 9, 355

12 and 15 mm, all embedded at a depth of 5 mm. Larger nodule is not considered, as 356

the diameter of the indenter (8 mm) is approximately half size compared to the average 357

width of the index finger’s fingertip that is 17 mm, according to reports in [35,36]. 358

Therefore, the robotic identification is performed both for nodules that can be difficult 359

for humans to sense and that are easier to perceive. In addition, to evaluate perception 360

between harder areas and soft uniform environment, the stiffness of the location with no 361

nodule is evaluated as well. The validation experiments are performed using the 362

following steps: 363

1. First, it is required to obtain the stiffness of each test location during static 364

probing. The static probing or indentation-based palpation means that the probe 365

is indented 5 mm down into the chosen location on the silicone phantom. The 366

force is measured at this point and the corresponding stiffness is calculated. We 367

call this measurement indentation-based stiffness. These stiffness values are used 368

to validate the performance of the proposed autonomous palpation. 369

2. In the second stage of the experimental studies, autonomous palpation is 370

performed on the same areas, that is, on five nodules and on empty locations. 371

Five trials were performed for each separate location. This type of behavior is 372

based on human tactile demonstrations and is formulated with the help of an 373

mainly used for autoregressive (AR) model. 374

3. The stiffness measurements from the same locations are compared, and it is 375

evaluated whether the proposed model can be used for robotic applications. 376

4. Finally, the validation of our modeling approach for the autonomous palpation is 377

performed in Section . Robotic palpation is performed using modulations of 378

lateral and normal forces separately. 379

Control Algorithm 380

The design of the control algorithm for autonomous palpation was based on the 381

proposed experimental design. The position control of the robot is implemented based 382

on the force feedback measured by the probing device. 383

The first stage of the algorithm is initialization of the system. The system is running 384

with the time interval of 120 ms, that was chosen empirically. This time allows the 385

system to reach the force defined by the autoregressive predictive model. The second 386

step is the definition of the stiffness threshold that is used to determine the presence of 387

the nodule. The stiffness threshold is calculated during the first indentation of the 388

probe in the phantom organ. Finally, the second order AR model requires two force 389

inputs to be initialised. Therefore, two first force readings are recorded for two 390

indentations of 0.25 mm depth. 391

After the initialisation is complete, the palpation loop is started. According to 392

human demonstrations, lateral and normal motions are applied also for robotic 393

palpation. The sinusoidal modulation is created due to lateral motion with the range of 394

2 mm, and it is set to fluctuate at frequency of 22.3 Hz. Normal motion of the robotic 395

probe is applied based on the desired force that is set by the AR model. 396

Each iteration of the palpation loop consists of the following steps: 1) the system 397

obtains force readings from the tactile probe; 2) the desired palpation force is predicted 398
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according to the output of the AR model; and 3) the desired force is translated into 399

normal displacement of the probe. The final stage is implemented via decremental or 400

incremental indentations of 0.25 mm, and at every indentation it is checked whether the 401

measured force corresponds to the desired force (with the tolerance of 0.01 N). In case 402

the desired force is not reached within the set limit of 120 ms, last measured force value 403

is used for the prediction with the AR model. The stiffness value is calculated according 404

to Eq. 2 at the end of each iteration. 405

Finally, it is required to understand the required length of robotic palpation to 406

record the modulation of stiffness after the stiffness threshold is achieved. It is difficult 407

to relate the speed of human palpation with the speed of robotic system. Temporal 408

resolution of human touch with two successive stimuli is about 5 ms [37]. In addition, 409

human decision making process regarding the presence of the nodule can depend on 410

various external factors. Therefore, in the robotic implementation it is required to 411

define a criterion determining the length of autonomous palpation and decision making 412

process. It was observed (Fig 10), that after some time of palpation, the measured force 413

feedback settles down to a steady state with vibrations. In the example in Fig 10, the 414

black solid line shows a trend of the response without an oscillatory component that 415

reaches 95% of steady state response at 51 seconds. The average time for all recorded 416

trials to reach 95% of steady state is 55 seconds. This time was selected to evaluate the 417

performance of robotic palpation. In addition, we have tested the robustness of the 418

system for lower percentages to reach steady state response, but only at 95% the result 419

was stable across all nodules. 420

Fig 10. Example stiffness measurement for autonomous palpation.
Analysis of steady state response to calculate the average time required to perform
autonomous palpation.

Analysis of Stiffness Measurement for Autonomous Robotic 421

Palpation 422

The results of stiffness measurement for autonomous robotic palpation for different sizes 423

of nodules are displayed on Fig 11. These results demonstrate how variable dynamics of 424

the probe causes the modulation of stiffness. The recorded stiffness varies near the 425

value of indentation based stiffness. Thus, the motion of the probe generates dynamic 426

gain of stiffness that can be used to enhance the perception. To understand the nature 427

of such response, variance and magnitude of the signal should be considered. Fig 12 428

visualizes the above parameters. 429

Fig 11. Stiffness measurements for indentation based measurements (red
dotted line) and autonomous palpation based on AR model (solid line) for
silicone with no nodule, nodules of 3, 6, 9, 12 and 15 mm for all trials.

Fig 12. a) Variance of stiffness measurements for autonomous palpation,
and b) Difference of stiffness for autonomous palpation and indentation
based measurement.
For silicone with no nodule, nodules of 3, 6, 9, 12 and 15 mm. Error bars show
standard deviation for multiple trials.

Mean variance of measured stiffness during autonomous palpation is displayed on 430

Fig 12a). According to Wilcox rank test that was performed for pairwise comparison, 431
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there is a significant difference for silicone with no nodules and nodules of 12 and 15 432

mm (Z = −2.85, p < 0.05). Thus, temporal variability of the stiffness caused by the 433

defined palpation behavior can enhance the perception of big-size nodules relatively to 434

the probing instrument. 435

In addition to variance of the signal, it is important to see the difference between the 436

real stiffness magnitude (indentation-based measurement) and the enhanced magnitude 437

from autonomous palpation. The mean value of the magnitude from autonomous 438

palpation is used. The values are represented on Fig 12b). It can be observed that the 439

difference with is negative only for the case of soft silicone palpation with no nodule 440

inside. Therefore, the stiffness calculated during autonomous exploration exceeds the 441

stiffness threshold that was measured during simple force indentation test. It can be 442

interpreted, that the static value of indentation-based stiffness is enhanced with some 443

dynamic gain. Therefore, the presence of the nodule on a chosen location can be 444

checked by using the obtained algorithm, and by comparing the measured stiffness with 445

the indentation-based stiffness from the same location. 446

Use of Lateral and Normal Forces for the Autonomous 447

Palpation 448

The motion of the probe or finger applies three-dimensional force to the phantom tissue. 449

According to the correlation analysis in Section , lateral and normal forces are 450

correlated. A final step of the the algorithm validation is the analysis of two 451

components of the system - sinusoidal modulation of lateral force, and modulation of 452

normal force caused by the autoregressive model. Here it is interesting to observe if it is 453

really required to use both lateral and normal forces during robotic palpation. This is to 454

apply both sinusoidal variation of the lateral force and the change of normal force 455

according to AR model during one single palpation. 456

To validate this assumption, two behaviors are tested separately on the small 457

nodules that might be difficult to detect - 3 and 9 mm. In case the algorithm performs 458

well for two separate behaviors, further tests are required to find the best approach. 459

Alternatively, if the algorithm fails for two small nodules, then the approach outlined 460

from human behavior (using both lateral and normal forces) outperforms the separate 461

behavior, and further tests are not required. Lateral force modulation was performed 462

with the fixed indentation of 5 mm, that corresponds to the depth of the embedded 463

nodules. Similarly to the previous section, stiffness variability and difference from the 464

indentation-based stiffness is evaluated. Fig 13 reflects the stiffness measurements for 465

the two separate behaviors for each nodule. 466

Fig 13. Stiffness obtained during validation experiments for nodules with 3
mm (a) and b)) and 9 mm diameter (c) and d)).
Subfigures (a) and c)) show stiffness obtained using lateral force modulation of the
robotic probe only. Subfigures (b) and d)) display stiffness for palpation using normal
force generated by AR based palpation with no modulation of lateral force. Red dotted
line shows stiffness measurements for indentation based palpation.

The variation of stiffness and difference from the indentation-based palpation for the 467

above experiment is reflected on Fig 14. It can be observed that separate lateral or 468

normal force motions do not create modulations that exceed 0.09 kPa. While, the 469

combined strategy produces the mean variance of 0.15 kPa and 0.24 kPa for diameters 470

of 3 mm and 9 mm, respectively. In addition, it can be observed, that the magnitude of 471

measured stiffness is not enhanced above the indentation-based palpation - the 472

difference is negative. Therefore, it can be concluded that robotic palpation should be 473
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implemented using modulations of normal and lateral forces, according to the outlined 474

human behavior. 475

Fig 14. Results of validation studies.
a) Variance of stiffness measurements and b) Difference of stiffness for autonomous
palpation and indentation based measurement, for silicone with nodules of 3 mm and 9
mm. Results from validation studies for separate lateral force modulations (Lat.) and
for AR based palpation with no lateral movement. Error bars show standard deviation
for multiple trials.

Nodule classification 476

Fig 15 displays the variance and difference of stiffness during autonomous palpation in 477

respect to the indentation-based for all robotic experiments to understand better the 478

results obtained by the autonomous palpation, and to evaluate the separate components 479

(lateral and normal modulations of forces). This graph can be used to evaluate the 480

performance of robotic palpation based on the distance from the zero point. Zero 481

denotes the stiffness that was measured during indentation based palpation. The closer 482

the point is from zero, the less difference is between autonomous palpation and 483

indentation based stiffness. In case the measurement is below the zero line threshold, 484

then the performance is considered less efficient. Wilcox rank test shows a significant 485

difference (Z = −3.74, p <0.05) between measurements displayed below the zero line 486

and measurements above zero. The combination of high variability (from the mean 487

stiffness) and high positive difference of stiffness (from the indentation-based palpation) 488

demonstrates the effectiveness of autonomous robotic palpation. 489

Fig 15. Variance and difference of stiffness of hard nodules and soft
environment for robotic palpation, for three different strategies.
Red points show the results of combined autonomous palpation, blue points correspond
to validation of separate lateral motion, and black points to separate normal motion.

It can be seen that autonomous palpation with both lateral and normal (AR model) 490

motion enhances the stiffness of all nodules tested during first experiments (red points). 491

Therefore, the dynamical interaction with the tissue containing harder areas increases 492

the stiffness perception. Whereas, palpation of soft silicone without a nodule (red point 493

”No nodule”) does not lead to stiffness enhancement. The silicone at the point of 494

palpation is homogeneous, and the indentation-based stiffness already produces correct 495

estimation of the measurement. 496

During the test of normal AR and lateral (blue dots) sinusoidal motion separately 497

different results can be observed that supports the use of both lateral and normal AR 498

motion simultaneously. Negative difference from indentation based palpation and low 499

variability of stiffness does not indicate the presence of the nodules and can lead to 500

misinterpretation by the user. 501

Discussion 502

The focus of this work is on palpation of a defined local area to perform thorough 503

tactile examination. However, the problem presented in this study should be considered 504

together with the other challenges associated with robotic palpation. Mapping of the 505

complex organ shape and control of the probe’s position in the viscoelastic environment 506

is one of them. This problem can be solved in several different ways. One approach 507
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Table 2. Relevant work on human palpation studies for robotic applications.

Focus of study Relevant findings Reference
Palpation of hard
nodules by humans

Force and velocity strategies are outlined
for palpation of a continuous path

[39]

Global robotic palpa-
tion

Correctly chosen global,palpation pattern
improves nodule identification

[40]

Evaluation of palpation
skills of clinicians

Most efficient skills are:1) Palpation of a
coin with a paper cover; 2) Controlling,
palpation pressure; 3) Discriminating
changes in soft Tissues; 4) Integrating,
skills with blindfold palpation.

[41]

Evaluation of learner’s,
performance for breast
palpation

Importance of global search palpation,
and local palpation, pressure is highlighted

[42]

Software framework for
robotic surgical tasks,
segmentation, of hard
inclusions

Results in the segmentation of hard
inclusions helped to outline parameters
such as sensitivity, specificity, duration,
and safety.

[43,44]

Vibration for robotic
surgery

Dragging strategy of palpation is better
combined with, vibro-tactile feedback,
compared to pressure

[45]

Robotic palpation
Importance of interaction behaviour and
internal stiffness control

[46]

involves the use of tactile probes that measure both force and indentation [38]. 508

Alternatively, it is possible to use virtual representation of the target organ [32]. 509

Another area of studies that should be considered in conjunction with this work is the 510

visualization of the obtained stiffness distribution from an organ. Array of tactile 511

sensors can be considered as a good tool for visualization. However, this sensing 512

solution does not always provide a good frequency response that makes it more suitable 513

for static indentation methods. In the robotic implementation of force modulation 514

strategy we demonstrate that the static indentation method can limit the possibility to 515

dynamically enhance the tactile signal from the target area. Nevertheless, simple 516

probing device with a spherical indenter, such as the one used in this studies also allows 517

good visualization capabilities for dynamic data acquisition, as was demonstrated 518

in [12]. In addition, such probe allows fast examination speed of the whole organ. 519

Local palpation techniques should be considered in conjunction with global 520

examination of an organ that is used to detect areas of possible abnormalities. Due to 521

complexity of the palpation environment and safety issues, tele-manipulated palpation is 522

the most suitable approach for global examination. Therefore, it can be combined with 523

autonomous palpation for selected areas to enhance the quality of the examination. To 524

expand the validation of our approach, in future studies it is planned to consider robotic 525

palpation of bigger nodules, as well as nodules of different shapes and orientation. 526

Another important aspect is the real-time assessment of the system performance due to 527

time constraints of the surgical operations. In our studies the identification of the 528

nodule was observed within first thirty seconds of palpation. For further real-time 529

analysis it is required to take into account global examination of an organ. 530

The findings presented in this work contribute to the general understanding of 531

techniques and features of palpation for robotic applications. The summary of our 532

findings, as well as other related works on human palpation behavior for robotic tactile 533

examination, is shown in Table 2. 534
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In this study it was required to use a sensor with good technical parameters to 535

perform validation and analysis of the proposed method. However, the advantage of 536

force control strategies is that they can be used with simple probing devices, which are 537

based on the indentation and force measurement principles. Therefore, there might be 538

no need to use tactile devices that have complex mechanical design or sensing principle 539

that is based on vibration or frequency. The work on the development of tactile probes 540

for robotic palpation is still ongoing research. Nevertheless, various affordable solutions 541

have been already developed to fulfill the requirements of the proposed system in terms 542

of force range, sensitivity and response, such as [38,47]. 543

The work presented in this paper builds a base for the understanding local palpation 544

behavioral strategies that can be used to improve the perception of non-homogeneous 545

distribution in soft tissue. However, the studies can also be applied to the examination 546

of viscoelastic environments for various other applications, such as the examination of 547

the whole range of rubbers and silicones for industrial applications where a robot needs 548

to perform sorting and manipulation of such materials, because we did not limit our 549

participants to trained experts in any particular palpation technique. 550

Conclusions 551

Three questions proposed in the beginning of this paper were investigated to study 552

modulation of applied force during localized palpation. First, palpation behavior as 553

demonstrated by humans is explored and formulated to understand the pattern of 554

applied force. Based on the way humans modulate the applied force during tactile 555

examination, an autoregressive model of finger movement pressure for local palpation 556

was outlined. Humans perform sinusoidal modulation of lateral forces to enhance the 557

perceived tactile information. 558

Second question was to investigate whether there exist a mathematical model that 559

can represent the pattern of force modulations. The analysis of human behavior during 560

palpation of hard nodules shows that the applied normal force can be modeled using the 561

second order reactive model. This means that every next movement was planned 562

according to the previously perceived information. 563

Then, to validate the abstracted palpation behavior and to answer the third 564

question, autonomous robotic palpation is performed. Robotic behavior is created using 565

recorded human demonstrations of tactile exploration. The robotic probe with a 566

spherical indentation tip is used to autonomously palpate soft tissue silicon phantom. 567

Thus, it was shown that the obtained model of modulation of the applied force enhances 568

the perception of stiffness from a non-homogeneous environment and can be successfully 569

used during robotic-based palpation. Also, we have demonstrated that it is necessary to 570

use a combination of lateral and normal motion to achieve a more efficient exploration 571

of the environment. The results have demonstrated that the applied behavior enhances 572

the perceived stiffness of hard nodules with the help of an increased magnitude as well 573

as variance of the perceived signal. 574
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