17 research outputs found
Unlocking the deployment of spectrum sharing with a policy enforcement framework
Spectrum sharing has been proposed as a promising way to increase the efficiency of spectrum usage by allowing incumbent operators (IOs) to share their allocated radio resources with licensee operators (LOs), under a set of agreed rules. The goal is to maximize a common utility, such as the sum rate throughput, while maintaining the level of service required by the IOs. However, this is only guaranteed under the assumption that all “players”respect the agreed sharing rules. In this paper, we propose a comprehensive framework for licensed shared access (LSA) networks that discourages LO misbehavior. Our framework is built around three core functions: misbehavior detection via the employment of a dedicated sensing network; a penalization function; and, a behavior-driven resource allocation. To the best of our knowledge, this is the first time that these components are combined for the monitoring/policing of the spectrum under the LSA framework. Moreover, a novel simulator for LSA is provided as an open access tool, serving the purpose of testing and validating our proposed techniques via a set of extensive system-level simulations in the context of mobile network operators, where IOs and several competing LOs are considered. The results demonstrate that violation of the agreed sharing rules can lead to a great loss of resources for the misbehaving LOs, the amount of which is controlled by the system. Finally, we promote that including a policy enforcement function as part of the spectrum sharing system can be beneficial for the LSA system, since it can guarantee compliance with the spectrum sharing rules and limit the short-term benefits arising from misbehavior
Dynamic Licensed Shared Access - a New Architecture and Spectrum Allocation Techniques
This paper proposes a new system architecture for Licensed Shared Access (LSA) wireless networks, as well as novel band management techniques for fair and ranking-based spectrum allocation. The proposed architecture builds upon recently standardized and regulatory-accepted LSA systems and stems from the work done in the EU-funded project ADEL. Two new resource allocation algorithms are introduced and their behaviour is validated via system-level simulations
Enhancing LTE with Cloud-RAN and Load-Controlled Parasitic Antenna Arrays
Cloud radio access network systems, consisting of remote radio heads densely distributed in a coverage area and connected by optical fibers to a cloud infrastructure with large computational capabilities, have the potential to meet the ambitious objectives of next generation mobile networks. Actual implementations of C-RANs tackle fundamental technical and economic challenges. In this article, we present an end-to-end solution for practically implementable C-RANs by providing innovative solutions to key issues such as the design of cost-effective hardware and power-effective signals for RRHs, efficient design and distribution of data and control traffic for coordinated communications, and conception of a flexible and elastic architecture supporting dynamic allocation of both the densely distributed RRHs and the centralized processing resources in the cloud to create virtual base stations. More specifically, we propose a novel antenna array architecture called load-controlled parasitic antenna array (LCPAA) where multiple antennas are fed by a single RF chain. Energy- and spectral-efficient modulation as well as signaling schemes that are easy to implement are also provided. Additionally, the design presented for the fronthaul enables flexibility and elasticity in resource allocation to support BS virtualization. A layered design of information control for the proposed end-to-end solution is presented. The feasibility and effectiveness of such an LCPAA-enabled C-RAN system setup has been validated through an over-the-air demonstration