10 research outputs found

    A Comparative Study on the Flocculation of Silica and China Clay with Chitosan and Synthetic Polyelectrolytes

    No full text
    Flocculation is still one of the most important and efficient processes for water treatment. However, most industrial processes, such as in water treatment plants, still use huge amounts of synthetic polyelectrolytes for the flocculation process. Here we compare the flocculation of two different suspended particles, i.e., silica particles and china clay, with the biopolymer chitosan and two common strong synthetic polyelectrolytes. As a flocculant, chitosan featured a minimum uptake rate of 0.05 mg/g for silica and 1.8 mg/g for china clay. Polydiallyldimethylammonium chloride (PDADMAC) for comparison possessed a minimum uptake rate of 0.05 mg/g for silica and 2.2 mg/g for china clay. Chitosan as an environmentally friendly biopolymer competes with the synthetic polyelectrolytes and thus represents a beneficial economic alternative to synthetic flocculants

    Size-Dependent Inhibition of Sperm Motility by Copper Particles as a Path toward Male Contraception

    No full text
    Effective inhibition of sperm motility using a spermicide can be a promising approach in developing non-invasive male contraceptive agents. Copper is known to have contraceptive properties and has been used clinically for decades as intrauterine contraceptive devices (IUDs) for contraception in females. Beyond that, the spermicidal use of copper is not explored much further, even though its use can also subdue the harmful effects caused by the hormonal female contraceptive agents on the environment. Herein, the size, concentration, and timedependent in vitro inhibition of bovine spermatozoa by copper microparticles are studied. The effectivity in inhibiting sperm motility is correlated with the amount of Cu²⁺ ions released by the particles during incubation. The copper particles cause direct suppression of sperm motility and viability upon incubation and thereby show potential as sperm-inhibiting, hormone-free candidate for male contraception. In addition, biocompatibility tests using a cervical cell line help optimizing the size and concentration of the copper particles for the best spermicidal action while avoiding toxicity to the surrounding tissue

    Size-Dependent Inhibition of Sperm Motility by Copper Particles as a Path toward Male Contraception

    Full text link
    Effective inhibition of sperm motility using a spermicide can be a promising approach in developing non-invasive male contraceptive agents. Copper is known to have contraceptive properties and has been used clinically for decades as intrauterine contraceptive devices (IUDs) for contraception in females. Beyond that, the spermicidal use of copper is not explored much further, even though its use can also subdue the harmful effects caused by the hormonal female contraceptive agents on the environment. Herein, the size, concentration, and time-dependent in vitro inhibition of bovine spermatozoa by copper microparticles are studied. The effectivity in inhibiting sperm motility is correlated with the amount of Cu2+ ions released by the particles during incubation. The copper particles cause direct suppression of sperm motility and viability upon incubation and thereby show potential as sperm-inhibiting, hormone-free candidate for male contraception. In addition, biocompatibility tests using a cervical cell line help optimizing the size and concentration of the copper particles for the best spermicidal action while avoiding toxicity to the surrounding tissue

    Native and Oxidized Starch for Adsorption of Nickel, Iron, and Manganese Ions from Water

    No full text
    The adsorption of heavy metal ions from surface water with ecologically safe and biodegradable biopolymers is increasingly becoming an appealing research challenge. Starch as a biopolymer is exceptionally attractive to solve this problem for its low cost and abundant availability in nature. To expel Ni2+, Fe2+/3+, and Mn2+ from water, we analyzed two native and two oxidized starches, namely potato and corn starch, as bio-adsorbers. The morphology and the surface property of the different starches were studied using SEM. To assess the effectiveness of adsorption onto the starches, we tested three realistic concentrations based on German drinking water ordinance values that were 10-fold, 100-fold, and 1000-fold the limits for Mn2+, Fe2+, and Ni2+, respectively. The concentration of the different ions was measured using the ICP-OES. Furthermore, from subsequent investigations of the adsorption isotherms, we evaluated the adsorption capacities and mechanisms. The adsorption isotherms were fitted using the Langmuir, Sips, and Dubinin–Radushkevich models, whereby Sips showed the highest correlation. Oxidized potato starch achieved viable adsorption capacities of 77 µmol Fe2+/g, 84 µmol Mn2+/g, and 118 µmol Ni2+/g. Investigating the influence of initial swelling in water on the adsorption performance, we found that especially the percentage removal with oxidized starches decreased significantly due to the formation of hydrogen bonds with water molecules at their binding sites with prior swelling

    Design of Polymer-Embedded Heterogeneous Fenton Catalysts for the Conversion of Organic Trace Compounds

    No full text
    Advanced oxidation processes are the main way to remove persistent organic trace compounds from water. For these processes, heterogeneous Fenton catalysts with low iron leaching and high catalytic activity are required. Here, the preparation of such catalysts consisting of silica-supported iron oxide (Fe2O3/SiOx) embedded in thermoplastic polymers is presented. The iron oxide catalysts are prepared by a facile sol–gel procedure followed by thermal annealing (calcination). These materials are mixed in a melt compounding process with modified polypropylenes to stabilize the Fe2O3 catalytic centers and to further reduce the iron leaching. The catalytic activity of the composites is analyzed by means of the Reactive Black 5 (RB5) assay, as well as by the conversion of phenol which is used as an example of an organic trace compound. It is demonstrated that embedding of silica-supported iron oxide in modified polypropylene turns the reaction order from pseudo-first order (found for Fe2O3/SiOx catalysts), which represents a mainly homogeneous Fenton reaction, to pseudo-zeroth order in the polymer composites, indicating a mainly heterogeneous, surface-diffusion-controlled process

    Removal of Iron, Manganese, Cadmium, and Nickel Ions Using Brewers’ Spent Grain

    No full text
    The human-made pollution of surface and ground waters is becoming an inevitable and persistently urgent problem for humankind and life in general, as these pollutants are also distributed by their natural circulation. For example, from mining activities and metallurgy, toxic heavy metals pollute the environment and present material risk for human health and the environment. Bioadsorbers are an intriguing way to efficiently capture and eliminate these hazards, as they are environmentally friendly, cheap, abundant, and efficient. In this study, we present brewers’ spent grain (BSG) as an efficient adsorber for toxic heavy metal ions, based on the examples of iron, manganese, cadmium, and nickel ions. We uncover the adsorption properties of two different BSGs and investigate thoroughly their chemical and physical properties as well as their efficiency as adsorbers for simulated and real surface waters. As a result, we found that the adsorption behavior of BSG types differs despite almost identical chemistry. Elemental mapping reveals that all components of BSG contribute to the adsorption. Further, both types are not only able to purify water to reach acceptable levels of cleanness, but also yield outstanding adsorption performance for iron ions of 0.2 mmol/g and for manganese, cadmium, and nickel ions of 0.1 mmol/g

    Removal of Iron, Manganese, Cadmium, and Nickel Ions Using Brewers’ Spent Grain

    No full text
    The human-made pollution of surface and ground waters is becoming an inevitable and persistently urgent problem for humankind and life in general, as these pollutants are also distributed by their natural circulation. For example, from mining activities and metallurgy, toxic heavy metals pollute the environment and present material risk for human health and the environment. Bioadsorbers are an intriguing way to efficiently capture and eliminate these hazards, as they are environmentally friendly, cheap, abundant, and efficient. In this study, we present brewers’ spent grain (BSG) as an efficient adsorber for toxic heavy metal ions, based on the examples of iron, manganese, cadmium, and nickel ions. We uncover the adsorption properties of two different BSGs and investigate thoroughly their chemical and physical properties as well as their efficiency as adsorbers for simulated and real surface waters. As a result, we found that the adsorption behavior of BSG types differs despite almost identical chemistry. Elemental mapping reveals that all components of BSG contribute to the adsorption. Further, both types are not only able to purify water to reach acceptable levels of cleanness, but also yield outstanding adsorption performance for iron ions of 0.2 mmol/g and for manganese, cadmium, and nickel ions of 0.1 mmol/g

    Conjugated Microporous Polymer Hybrid Microparticles for Enhanced Applicability in Silica‐Boosted Diclofenac Adsorption

    No full text
    Diclofenac (DCF) is one of the most widespread and consumed analgesics, thereby causing contamination of water bodies on a global scale. A common approach to tackle this pressing issue is the adsorption of DCF exploiting highly hydrophobic polymers. However, controlling the morphology of such polymers is essential. Adsorption capacities of the presented conjugated microporous polymer (CMP) in bulk‐form, for DCF (qsat) are as low as 13.0 mg g−1 despite exhibiting additional nitrogen moieties to specifically target DCF. Herein, an approach to drastically increase the DCF adsorption by increasing the accessible hydrophobic surface area by coating it around mesoporous silica microspheres is shown. These microspheres do not attribute to the adsorption of DCF themselves, but increase the accessibility of the CMP. Simultaneously, the applicability of the hybrid material is enhanced through higher wettability and more facile separation. As a consequence, an effective adsorbent is formed featuring an adsorption of up to 422 mg DCF per 1 × g CMP for the optimized silica/monomer ratio — comparable to expensive state‐of‐art materials. As the approach combines the advantages of the nano‐ and the micro‐dimension and does not depend on the actual adsorbent material, it holds great potential for general adsorption problems requiring highly engineered systems
    corecore