5,588 research outputs found

    Correlations in hypernuclear matter

    Full text link
    We investigate short range correlations in nuclear and hypernuclear matter. Self-energies due to short range correlations and their influence on the nucleon and Λ\Lambda-hyperon spectral functions are described in an approach accounting for a realistic treatment of mean-field dynamics and a self-consistently derived quasi-particle interaction. Landau-Migdal theory is used to derived the short range interaction from a phenomenological Skyrme energy density functional, subtracting the long range pionic contributions to the nucleonic spectral functions. We discuss our results for different hyperon-baryon ratios to show the influence of strangeness on the correlations in hypernuclear matter.Comment: 7 pages, 5 figures, proceedings for HYP06 in Main

    Fractional Talbot effect in phase space: A compact summation formula

    Full text link
    A phase space description of the fractional Talbot effect, occurring in a one-dimensional Fresnel diffraction from a periodic grating, is presented. Using the phase space formalism a compact summation formula for the Wigner function at rational multiples of the Talbot distance is derived. The summation formula shows that the fractional Talbot image in the phase space is generated by a finite sum of spatially displaced Wigner functions of the source field.Comment: 4 pages, LaTeX. Submitted to Optics Expres

    Maintaining Quantum Coherence in the Presence of Noise through State Monitoring

    Full text link
    Unsharp POVM measurements allow the estimation and tracking of quantum wavefunctions in real-time with minimal disruption of the dynamics. Here we demonstrate that high fidelity state monitoring, and hence quantum control, is possible even in the presence of classical dephasing and amplitude noise, by simulating such measurements on a two-level system undergoing Rabi oscillations. Finite estimation fidelity is found to persist indefinitely long after the decoherence times set by the noise fields in the absence of measurement.Comment: 5 pages, 4 figure

    Conduction Channels of One-Atom Zinc Contacts

    Get PDF
    We have determined the transmission coefficients of atomic-sized Zn contacts using a new type of breakjunction which contains a whisker as a central bridge. We find that in the last conductance plateau the transport is unexpectedly dominated by a well-transmitting single conduction channel. We explain the experimental findings with the help of a tight-binding model which shows that in an one-atom Zn contact the current proceeds through the 4s and 4p orbitals of the central atom.Comment: revtex4, 5 pages, 5 figure
    • …
    corecore