211 research outputs found

    Triterpenoids Display Single Agent Anti-tumor Activity in a Transgenic Mouse Model of Chronic Lymphocytic Leukemia and Small B Cell Lymphoma

    Get PDF
    The synthetic triterpenoid 2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic Acid (CDDO) and derivatives display anti-tumor activity against a variety of cultured tumor cell lines and in mouse xenografts. In this report, we have studied the effects of CDDO and its imidazolide derivative (CDDO-Im) on chronic lymphocytic leukemia (CLL), using patients' CLL cells and a mouse model of CLL and small B cell lymphoma (SBL).CDDO and CDDO-Im efficiently induced apoptosis of malignant human and mouse B-cells ex vivo, although CDDO-Im was over 10-fold more potent than CDDO. Treating mice with CLL/SBL with liposome-formulated CDDO or CDDO-Im resulted in significant reductions of B cells in blood, spleen and lung. CDDO-Im was shown to be more potent than CDDO, while treatment with empty liposomes had no impact on disease. CDDO-Im treatment initially resulted in an increase of circulating B cells, which correlates with a reduction in resident lymphocytes in spleen, and lungs, suggesting that CDDO-Im induces mobilization of tumor cells from lymphoid organs and infiltrated tissues into the circulation. Analysis of blood cells recovered from treated mice also showed that CDDO-Im is a potent inducer of tumor cells death in vivo. Furthermore, CDDO-Im efficiently eradicated mouse CLL/SBL cells but had little effect on the viability of normal B and T cells in vivo.The presented data demonstrate that triterpenoids CDDO and CDDO-Im reduce leukemia and lymphoma burden in vivo in a transgenic mouse model of CLL/SBL, and support the clinical testing of CDDO-based synthetic triterpenoids in patients with CLL

    Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia

    Get PDF
    : Recent studies suggest that the Bcl-2 and mitogen-activated protein kinase (MAPK) pathways together confer an aggressive, apoptosis-resistant phenotype on acute myelogenous leukemia (AML) cells. In this study, we analyzed the effects of simultaneous inhibition of these 2 pathways. In AML cell lines with constitutively activated MAPK, MAPK kinase (MEK) blockade by PD184352 strikingly potentiated the apoptosis induced by the small-molecule Bcl-2 inhibitor HA14-1 or by Bcl-2 antisense oligonucleotides. Isobologram analysis confirmed the synergistic nature of this interaction. Moreover, MEK blockade overcame Bcl-2 overexpression-mediated resistance to the proapoptotic effects of HA14-1. Most importantly, simultaneous exposure to PD184352 significantly (P =.01) potentiated HA14-1-mediated inhibition of clonogenic growth in all primary AML samples tested. These findings show that the Bcl-2 and MAPK pathways are relevant molecular targets in AML and that their concurrent inhibition could be developed into a new therapeutic strategy for this disease

    MEK blockade converts AML differentiating response to retinoids into extensive apoptosis

    Get PDF
    : The aberrant function of transcription factors and/or kinase-based signaling pathways that regulate the ability of hematopoietic cells to proliferate, differentiate, and escape apoptosis accounts for the leukemic transformation of myeloid progenitors. Here, we demonstrate that simultaneous retinoid receptor ligation and blockade of the MEK/ERK signaling module, using the small-molecule inhibitor CI-1040, result in a strikingly synergistic induction of apoptosis in both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells with constitutive ERK activation. This proapoptotic synergism requires functional RAR and RXR retinoid receptors, as demonstrated using RAR- and RXR-selective ligands and RAR-defective cells. In the presence of MEK inhibitors, however, retinoid-induced chromatin remodeling, target-gene transcription, and granulocytic differentiation are strikingly inhibited and apoptosis induction becomes independent of death-inducing ligand/receptor pairs; this suggests that apoptosis induction by combined retinoids and MEK inhibitors is entirely distinct from the classical "postmaturation" apoptosis induced by retinoids alone. Finally, we identify disruption of Bcl-2-dependent mitochondrial homeostasis as a possible point of convergence for the proapoptotic synergism observed with retinoids and MEK inhibitors. Taken together, these results indicate that combined retinoid treatment and MEK blockade exert powerful antileukemic effects and could be developed into a novel therapeutic strategy for both AML and APL

    Impact of Venetoclax and Azacitidine in Treatment-NaĂŻve Patients with Acute Myeloid Leukemia and IDH1/2 Mutations

    Get PDF
    partially_open16Purpose: To evaluate efficacy and safety of venetoclax + azacitidine among treatment-naïve patients with IDH1/2-mutant (mut) acute myeloid leukemia (AML). Patients and methods: Data were pooled from patients enrolled in a phase III study (NCT02993523) that compared patients treated with venetoclax + azacitidine or placebo + azacitidine and a prior phase Ib study (NCT02203773) where patients were treated with venetoclax + azacitidine. Enrolled patients were ineligible for intensive therapy due to age ≥75 years and/or comorbidities. Patients on venetoclax + azacitidine received venetoclax 400 mg orally (days 1-28) and azacitidine (75 mg/m2; days 1-7/28-day cycle). Results: In the biomarker-evaluable population, IDH1/2mut was detected in 81 (26%) and 28 (22%) patients in the venetoclax + azacitidine and azacitidine groups. Composite complete remission [CRc, complete remission (CR)+CR with incomplete hematologic recovery (CRi)] rates (venetoclax + azacitidine/azacitidine) among patients with IDH1/2mut were 79%/11%, median duration of remission (mDoR) was 29.5/9.5 months, and median overall survival (mOS) was 24.5/6.2 months. CRc rates among patients with IDH1/2 wild-type (WT) were 63%/31%, mDoR 17.5/10.3 months, and mOS 12.3/10.1 months. In patients with IDH1mut, CRc rates (venetoclax + azacitidine/azacitidine) were 66.7%/9.1% and mOS 15.2/2.2 months. In patients with IDH2mut, CRc rates were 86.0%/11.1% and mOS not reached (NR)/13.0 months. Patients with IDH1/2 WT AML treated with venetoclax + azacitidine with poor-risk cytogenetics had inferior outcomes compared with patients with IDH1/2mut, who had superior outcomes regardless of cytogenetic risk (mOS, IDH1/2mut: intermediate-risk, 24.5 months; poor-risk, NR; IDH1/2 WT: intermediate, 19.2 and poor, 7.4 months). There were no unexpected toxicities in the venetoclax + azacitidine group. Conclusions: Patients with IDH1/2mut who received venetoclax + azacitidine had high response rates, durable remissions, and significant OS; cytogenetic risk did not mitigate the favorable outcomes seen from this regimen for IDH1/2mut.partially_openembargoed_20230131Pollyea, Daniel A; DiNardo, Courtney D; Arellano, Martha L; Pigneux, Arnaud; Fiedler, Walter; Konopleva, Marina; Rizzieri, David A; Smith, B Douglas; Shinagawa, Atsushi; Lemoli, Roberto M; Dail, Monique; Duan, Yinghui; Chyla, Brenda; Potluri, Jalaja; Miller, Catherine L; Kantarjian, Hagop MPollyea, Daniel A; Dinardo, Courtney D; Arellano, Martha L; Pigneux, Arnaud; Fiedler, Walter; Konopleva, Marina; Rizzieri, David A; Smith, B Douglas; Shinagawa, Atsushi; Lemoli, Roberto M; Dail, Monique; Duan, Yinghui; Chyla, Brenda; Potluri, Jalaja; Miller, Catherine L; Kantarjian, Hagop

    MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia.

    Get PDF
    Patients with refractory or relapsed acute myeloid leukemia (R/R AML) have a poor prognosis, with a high unmet medical need. Idasanutlin is a small-molecule inhibitor of MDM2, a negative regulator of tumor suppressor p53. By preventing the p53–MDM2 interaction, idasanutlin allows for p53 activation, particularly in patients with TP53 wild-type (WT) status. MIRROS (NCT02545283) is a randomized Phase III trial evaluating idasanutlin + cytarabine versus placebo + cytarabine in R/R AML. The primary end point is overall survival in the TP53-WT population. Secondary end points include complete remission rate (cycle 1), overall remission rate (cycle 1) and event-free survival in the TP53-WT population. MIRROS has an innovative design that integrates a stringent interim analysis for futility; continuation criteria were met in mid-2017 and accrual is ongoing. Trial registration number: NCT0254528

    Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes

    Get PDF
    TP53 mutations are associated with adverse outcomes and shorter response to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS). Limited data have evaluated the impact of the type, number, and patterns of TP53 mutations in response outcomes and prognosis of MDS. We evaluated the clinicopathologic characteristics, outcomes, and response to therapy of 261 patients with MDS and TP53 mutations. Median age was 68 years (range, 18-80 years). A total of 217 patients (83%) had a complex karyotype. TP53 mutations were detected at a median variant allele frequency (VAF) of 0.39 (range, 0.01-0.94). TP53 deletion was associated with lower overall response rate (ORR) (odds ratio, 0.3; P = .021), and lower TP53 VAF correlated with higher ORR to HMAs. Increase in TP53 VAF at the time of transformation was observed in 13 patients (61%), and previously undetectable mutations were observed in 15 patients (65%). TP53 VAF was associated with worse prognosis (hazard ratio, 1.02 per 1% VAF increase; 95% confidence interval, 1.01-1.03; P \u3c .001). Integration of TP53 VAF and karyotypic complexity identified prognostic subgroups within TP53-mutant MDS. We developed a multivariable model for overall survival that included the revised International Prognostic Scoring System (IPSS-R) categories and TP53 VAF. Total score for each patient was calculated as follows: VAF TP53 + 13 Ă— IPSS-R blast score + 16 Ă— IPSS-R cytogenetic score + 28 Ă— IPSS-R hemoglobin score + 46 Ă— IPSS-R platelet score. Use of this model identified 4 prognostic subgroups with median survival times of not reached, 42.2, 21.9, and 9.2 months. These data suggest that outcomes of patients with TP53-mutated MDS are heterogeneous and that transformation may be driven not only by TP53 but also by other factors

    MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199

    Get PDF
    Targeted therapies designed to exploit specific molecular pathways in aggressive cancers are an exciting area of current research. Mixed Lineage Leukemia (MLL) mutations such as the t(4;11) translocation cause aggressive leukemias that are refractory to conventional treatment. The t(4;11) translocation produces an MLL/AF4 fusion protein that activates key target genes through both epigenetic and transcriptional elongation mechanisms. In this study, we show that t(4;11) patient cells express high levels of BCL-2 and are highly sensitive to treatment with the BCL-2-specific BH3 mimetic ABT-199. We demonstrate that MLL/AF4 specifically upregulates the BCL-2 gene but not other BCL-2 family members via DOT1L-mediated H3K79me2/3. We use this information to show that a t(4;11) cell line is sensitive to a combination of ABT-199 and DOT1L inhibitors. In addition, ABT-199 synergizes with standard induction-type therapy in a xenotransplant model, advocating for the introduction of ABT-199 into therapeutic regimens for MLL-rearranged leukemias. Therapies designed to exploit specific molecular pathways in aggressive cancers are an exciting area of research. Mutations in the MLL gene cause aggressive incurable leukemias. Benito et al. show that MLL leukemias are highly sensitive to BCL-2 inhibitors, especially when combined with drugs that target mutant MLL complex activity
    • …
    corecore