23 research outputs found

    Gemini planet imager observational calibrations V: Astrometry and distortion

    Get PDF
    This is the final version of the article. Available from SPIE via the DOI in this record.From Conference Volume 9147: Ground-based and Airborne Instrumentation for Astronomy V, Suzanne K. Ramsay; Ian S. McLean; Hideki Takami, Montréal, Quebec, Canada, June 22, 2014We present the results of both laboratory and on sky astrometric characterization of the Gemini Planet Imager (GPI). This characterization includes measurement of the pixel scale∗ of the integral field spectrograph (IFS), the position of the detector with respect to north, and optical distortion. Two of these three quantities (pixel scale and distortion) were measured in the laboratory using two transparent grids of spots, one with a square pattern and the other with a random pattern. The pixel scale in the laboratory was also estimate using small movements of the artificial star unit (ASU) in the GPI adaptive optics system. On sky, the pixel scale and the north angle are determined using a number of known binary or multiple systems and Solar System objects, a subsample of which had concurrent measurements at Keck Observatory. Our current estimate of the GPI pixel scale is 14.14 ± 0.01 millarcseconds/pixel, and the north angle is -1.00 ± 0.03°. Distortion is shown to be small, with an average positional residual of 0.26 pixels over the field of view, and is corrected using a 5th order polynomial. We also present results from Monte Carlo simulations of the GPI Exoplanet Survey (GPIES) assuming GPI achieves ∼1 milliarcsecond relative astrometric precision. We find that with this precision, we will be able to constrain the eccentricities of all detected planets, and possibly determine the underlying eccentricity distribution of widely separated Jovians.The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). This publication makes use of data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. P.K. and J.R.G. thank support from NASA NNX11AD21G, NSF AST-0909188, and the University of California LFRP-118057. Q.M.K is a Dunlap Fellow at the Dunlap Institute for Astronomy & Astrophysics, University of Toronto. The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto

    Observing Exoplanets with the James Webb Space Telescope

    Get PDF
    The census of exoplanets has revealed an enormous variety of planets or- biting stars of all ages and spectral types: planets in orbits of less than a day to frigid worlds in orbits over 100 AU; planets with masses 10 times that of Jupiter to planets with masses less than that of Earth; searingly hot planets to temperate planets in the Habitable Zone. The challenge of the coming decade is to move from demography to physical characterization. The James Webb Space Telescope (JWST) is poised to open a revolutionary new phase in our understanding of exoplanets with transit spectroscopy of relatively short period planets and coronagraphic imaging of ones with wide separations from their host stars. This article discusses the wide variety of exoplanet opportunities enabled by JWSTs sensitivity and stability, its high angular resolution, and its suite of powerful instruments. These capabilities will advance our understanding of planet formation, brown dwarfs, and the atmospheres of young to mature planets

    Atmospheric retrieval of exoplanets

    Get PDF
    Exoplanetary atmospheric retrieval refers to the inference of atmospheric properties of an exoplanet given an observed spectrum. The atmospheric properties include the chemical compositions, temperature profiles, clouds/hazes, and energy circulation. These properties, in turn, can provide key insights into the atmospheric physicochemical processes of exoplanets as well as their formation mechanisms. Major advancements in atmospheric retrieval have been made in the last decade, thanks to a combination of state-of-the-art spectroscopic observations and advanced atmospheric modeling and statistical inference methods. These developments have already resulted in key constraints on the atmospheric H2O abundances, temperature profiles, and other properties for several exoplanets. Upcoming facilities such as the JWST will further advance this area. The present chapter is a pedagogical review of this exciting frontier of exoplanetary science. The principles of atmospheric retrievals of exoplanets are discussed in detail, including parametric models and statistical inference methods, along with a review of key results in the field. Some of the main challenges in retrievals with current observations are discussed along with new directions and the future landscape

    Fast spin of the young extrasolar planet β Pictoris b

    No full text
    The spin-rotation of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the solar system, the equatorial rotation velocities and spin angular momentum of the planets show a clear trend with mass, except for Mercury and Venus which have significantly spun down since their formation due to tidal interactions. Here we report on near-infrared spectroscopic observations at R=100,000 of the young extra-solar gas giant beta Pictoris b. The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to the velocity of the parent star by (-15+-1.7) km/sec, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of 25+-3 km/sec, meaning that Beta Pictoris b spins significantly faster than any planet in the solar system, in line with the extrapolation of the known trend in spin velocity with planet mass.Comment: Appears in the May 1st, 2014 issue of Nature, with title 'Fast spin of a young extrasolar planet
    corecore