4 research outputs found

    Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron.

    Get PDF
    Parvalbumin (PV)-producing fast-spiking neurons are well known to generate gamma oscillation by mutual chemical and electrical connections in the neocortex. Although it was clearly demonstrated that PV neurons form a dense gap junction network with each other not only at the proximal sites but also at the distal dendrites, comprehensive quantitative data on the chemical connections are still lacking. To elucidate the connectivity, we investigated inhibitory inputs to PV neurons in the somatosensory cortex, using the transgenic mice in which the dendrites and cell bodies of PV neurons were clearly visualized. We first examined GABAergic inputs to PV neurons by labeling postsynaptic and presynaptic sites with the immunoreactivities for gephyrin and vesicular GABA transporter. The density of GABAergic inputs was highest on the cell bodies, and almost linearly decreased to the distal dendrites. We then investigated inhibitory inputs from three distinct subgroups of GABAergic interneurons by visualizing the axon terminals immunopositive for PV, somatostatin (SOM), or vasoactive intestinal polypeptide (VIP). PV and SOM inputs were frequently located on the dendrites with the ratio of 2.5:1, but much less on the cell bodies. By contrast, VIP inputs clearly preferred the cell bodies to the dendrites. Consequently, the dendritic and somatic compartments of PV neurons received ∼60 and 62% of inhibitory inputs from PV and VIP neurons, respectively. This compartmental organization of inhibitory inputs suggests that PV neurons, together with gap junctions, constitute mutual connections at the dendrites, and that their activities are negatively controlled by the somatic inputs of VIP neurons

    Expression of gap junction protein connexin36 in multiple subtypes of GABAergic neurons in adult rat somatosensory cortex.

    Get PDF
    To characterize connexin36 (Cx36)-expressing neurons of the adult rat somatosensory cortex, we examined fluorescence signals for Cx36 messenger RNA (mRNA) in 3 nonoverlapping subpopulations of γ-aminobutyric acid (GABA)ergic interneurons, which showed immunoreactivity for 1) parvalbumin (PV); 2) somatostatin (SOM); and 3) either calretinin (CR), vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), or choline acetyltransferase (ChAT). About 80% of PV-, 52% of SOM-, 37% of CR/VIP/CCK/ChAT-immunoreactive cells displayed Cx36 signals across all cortical layers, and inversely 64%, 25%, and 9% of Cx36-expressing neurons were positive for PV, SOM, or CR/VIP/CCK/ChAT, respectively. Notably, although almost all Cx36-expressing neurons in layer (L) 4, L5, and L6 were positive for one of these markers, a substantial proportion of those in L1 (91%) and L2/3 (10%) were negative for the markers tested, suggesting that other types of neurons might express Cx36. We further investigated the colocalization of Cx36 mRNA and α-actinin2 immunoreactivity, as a marker for late-spiking GABAergic neurons, by using mirror-image sections. Surprisingly, more than 77% of α-actinin2-positive cells displayed Cx36 signals in L1-L3, and about 49% and 13% of Cx36-expressing neurons were positive for α-actinin2 in L1 and L2/3, respectively. These findings suggest that all the subtypes of GABAergic interneurons might form gap junctions in the neocortex

    Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex.

    Get PDF
    Corticothalamic projection neurons in the cerebral cortex constitute an important component of the thalamocortical reciprocal circuit, an essential input/output organization for cortical information processing. However, the spatial organization of local excitatory connections to corticothalamic neurons is only partially understood. In the present study, we first developed an adenovirus vector expressing somatodendritic membrane-targeted green fluorescent protein. After injection of the adenovirus vector into the ventrobasal thalamic complex, a band of layer (L) 6 corticothalamic neurons in the rat barrel cortex were retrogradely labeled. In addition to their cell bodies, fine dendritic spines of corticothalamic neurons were well visualized without the labeling of their axon collaterals or thalamocortical axons. In cortical slices containing retrogradely labeled L6 corticothalamic neurons, we intracellularly stained single pyramidal/spiny neurons of L2-6. We examined the spatial distribution of contact sites between the local axon collaterals of each pyramidal neuron and the dendrites of corticothalamic neurons. We found that corticothalamic neurons received strong and focused connections from L4 neurons just above them, and that the most numerous nearby and distant sources of local excitatory connections to corticothalamic neurons were corticothalamic neurons themselves and L6 putative corticocortical neurons, respectively. These results suggest that L4 neurons may serve as an important source of local excitatory inputs in shaping the cortical modulation of thalamic activity
    corecore