20 research outputs found
Identiļ¬cation of Disulļ¬de Bond Formation between MitoNEET and Glutamate Dehydrogenase 1
MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1
Identiļ¬cation of Disulļ¬de Bond Formation between MitoNEET and Glutamate Dehydrogenase 1
MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1
Modulation of cellular energetics by galactose and pioglitazone.
The Warburg effect is ameliorated by culturing transformed cells in the presence of galactose instead of glucose as the primary carbon source. However, metabolic consequences that are in addition to sensitizing the cells to mitochondrial toxins may occur. As such, the screening of pharmaceutical agents against transformed cells while using galactose must be carefully evaluated. Pioglitazone is used in clinical applications to treat type-2 diabetes, but clearly has other off target effects. Human hepatocellular carcinoma cells (HepG2) were cultured in glucose or galactosecontaining medium to investigate the role of pioglitazone on cellular bioenergetics employing calorimetry and respirometry. Compared to cells cultured in 10 mM glucose, HepG2 cells cultured in the presence of 10 mM galactose showed decreased metabolic activity as measured by cellular heat flow. Interestingly, cellular heat flow increased after addition of pioglitazone for cells cultured in glucose, but not for cells cultured in galactose. Our calorimetric data indicate that a reduction in cellular capacity for glycolysis might be the mechanism responsible for the increase in sensitivity to pioglitazone, and likely mitochondrial toxins in general, for cells cultured in galactose. Furthermore, oxygen consumption rates were decreased after addition of pioglitazone to cells grown in glucose, but remained unchanged for cells grown in presence of galactose. Taken together, we demonstrate that pioglitazone induced a reduction in mitochondrial activity that was partially compensated via an increase in glycolysis in the presence of glucose
Crystal structure of the mitochondrial protein mitoNEET bound to a benze-sulfonide ligand
MitoNEET (gene cisd1) is a mitochondrial outer membrane [2Fe-2S] protein and is a potential drug target in several metabolic diseases. Previous studies have demonstrated that mitoNEET functions as a redox-active and pH-sensing protein that regulates mitochondrial metabolism, although the structural basis of the potential drug binding site(s) remains elusive. Here we report the crystal structure of the soluble domain of human mitoNEET with a sulfonamide ligand, furosemide. Exploration of the high-resolution crystal structure is used to design mitoNEET binding molecules in a pilot study of molecular probes for use in future development of mitochondrial targeted therapies for a wide variety of metabolic diseases, including obesity, diabetes and neurodegenerative diseases such as Alzheimerās and Parkinsonās disease
Crystal Structure of the Mitochondrial Protein mitoNEET Bound to a Benze-sulfonide Ligand
MitoNEET (gene cisd1) is a mitochondrial outer membrane [2Fe-2S] protein and is a potential drug target in several metabolic diseases. Previous studies have demonstrated that mitoNEET functions as a redox-active and pH-sensing protein that regulates mitochondrial metabolism, although the structural basis of the potential drug binding site(s) remains elusive. Here we report the crystal structure of the soluble domain of human mitoNEET with a sulfonamide ligand, furosemide. Exploration of the high-resolution crystal structure is used to design mitoNEET binding molecules in a pilot study of molecular probes for use in future development of mitochondrial targeted therapies for a wide variety of metabolic diseases, including obesity, diabetes and neurodegenerative diseases such as Alzheimerās and Parkinsonās disease
Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value OBFC1indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes
The Mitochondrial Protein MitoNEET as a Probe for the Allostery of Glutamate Dehydrogenase
The proteins glutamate dehydrogenase (GDH) and mitoNEET are both targets of drug development efforts to treat metabolic disorders, cancer, and neurodegenerative diseases. However, these two proteins differ starkly in the current knowledge about ligand binding sites. MitoNEET is a [2Fe-2S]-containing protein with no obvious binding site for small ligands observed in its crystal structures. In contrast, GDH is known to have a variety of ligands at multiple allosteric sites thereby leading to complex regulation in activity. In fact, while GDH can utilize either NAD(H) or NADP(H) for catalysis at the active site, only NAD(H) binds at a regulatory site to inhibit GDH activity. Previously, we found that mitoNEET forms a covalent bond with GDH in vitro and increases the catalytic activity of the enzyme. In this study we evaluated the effects of mitoNEET binding on the allosteric control of GDH conferred by inhibitors. We examined all effectors using NAD or NADP as the coenzyme to determine allosteric linkage by the NAD-binding regulatory site. We found that GDH activity, in the presence of the inhibitory palmitoyl-CoA and EGCG, can be rescued by mitoNEET, regardless of the coenzyme used. This suggests that mitoNEET rescues GDH by stabilizing the open conformation
Identification of Disulfide Bond Formation between MitoNEET and Glutamate Dehydrogenase 1
MitoNEET is a protein that was identified
as a drug target for
diabetes, but its cellular function as well as its role in diabetes
remains elusive. Protein pull-down experiments identified glutamate
dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key
metabolic enzyme with emerging roles in insulin regulation. MitoNEET
forms a covalent complex with GDH1 through disulfide bond formation
and acts as an activator. Proteomic analysis identified the specific
cysteine residues that participate in the disulfide bond. This is
the first report that effectively links mitoNEET to activation of
the insulin regulator GDH1
Indomethacin Amides as a Novel Molecular Scaffold for Targeting Trypanosoma cruzi Sterol 14Ī±-Demethylase
Trypanosoma cruzi (TC) causes Chagas disease, which in its chronic stage remains incurable. We have shown recently that specific inhibition of TC sterol 14Ī±-demethylase (TCCYP51) with imidazole derivatives is effective in killing both extracellular and intracellular human stages of TC. An alternative set of TCCYP51 inhibitors has been identified using optical high throughput screening followed by web-database search for similar structures. The best TCCYP51 inhibitor from this search was found to have structural similarity to a class of cyclooxygenase-2-selective inhibitors, the indomethacin-amides. A number of indomethacin-amides were found to bind to TCCYP51, inhibit its activity in vitro, and produce strong antiparasitic effects in the cultured TC cells. Analysis of TC sterol composition indicated that the mode of action of the compounds is by inhibition of sterol biosynthesis in the parasite