90 research outputs found

    Discovery of a new repeat family in the Callithrix jacchus genome

    Get PDF
    We identified a novel repeat family, termed Platy-1, in the Callithrix jacchus (common marmoset) genome that arose around the time of the divergence of platyrrhines and catarrhines and established itself as a repeat family in New World monkeys (NWMs). A full-length Platy-1 element is ∼100 bp in length, making it the shortest known short interspersed element (SINE) in primates, and harbors features characteristic of non-LTR retrotransposons. We identified 2268 full-length Platy-1 elements across 62 subfamilies in the common marmoset genome. Our subfamily reconstruction and phylogenetic analyses support Platy-1 propagation throughout the evolution of NWMs in the lineage leading to C. jacchus. Platy-1 appears to have reached its amplification peak in the common ancestor of current day marmosets and has since moderately declined. However, identification of more than 200 Platy-1 elements identical to their respective consensus sequence, and the presence of polymorphic elements within common marmoset populations, suggests ongoing retrotransposition activity. Platy-1, a SINE, appears to have originated from an Alu element, and hence is likely derived from 7SL RNA. Our analyses illustrate the birth of a new repeat family and its propagation dynamics in the lineage leading to the common marmoset over the last 40 million years

    Strategic Planning for Environmental Stewardship at Eastern Kentucky University

    Get PDF
    The 2006-2010 Strategic Plan for Eastern Kentucky University, under Strategic Direction 5.4, mandates the formulation of a plan to guide the University toward greater environmental stewardship. The creation and implementation of that plan is the charge of the Eastern Committee on Responsible Environmental Stewardship (ECRES), which was formed in September of 2005. On October 27th, 2006, ECRES hosted a Strategic Planning Workshop. This workshop brought together a wide range of paticipants, including elected officials, college and university representatives, and interested citizens. The result was a broad consensus in the identification of environmental goals and objectives toward which EKU should strive

    Mobile DNA in Old World monkeys: A glimpse through the rhesus macaque genome

    Get PDF
    The completion of the draft sequence of the rhesus macaque genome allowed us to study the genomic composition and evolution of transposable elements in this representative of the Old World monkey lineage, a group of diverse primates closely related to humans. The L1 family of long interspersed elements appears to have evolved as a single lineage, and Alu elements have evolved into four currently active lineages. We also found evidence of elevated horizontal transmissions of retroviruses and the absence of DNA transposon activity in the Old World monkey lineage. In addition, ∼100 precursors of composite SVA (short interspersed element, variable number of tandem repeat, and Alu) elements were identified, with the majority being shared by the common ancestor of humans and rhesus macaques. Mobile elements compose roughly 50% of primate genomes, and our findings illustrate their diversity and strong influence on genome evolution between closely related species

    An integrated map of structural variation in 2,504 human genomes

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association

    Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After infecting a mammalian host, the facultative intracellular bacterium, <it>Francisella tularensis</it>, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection.</p> <p>Results</p> <p>Microarray analysis of <it>F. tularensis </it>LVS shifted from 26°C (environmental) to 37°C (mammalian) showed ~11% of this bacterium's genes were differentially-regulated. Importantly, 40% of the protein-coding genes that were induced at 37°C have been previously implicated in virulence or intracellular growth of <it>Francisella </it>in other studies, associating the bacterial response to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37°C encode proteins of unknown function, suggesting novel <it>Francisella </it>virulence traits are regulated by mammalian temperature. To explore this possibility, we generated two mutants of loci induced at 37°C [FTL_1581 and FTL_1664 (<it>deoB</it>)]. The FTL_1581 mutant was attenuated in a chicken embryo infection model, which was likely attributable to a defect in survival within macrophages. FTL_1581 encodes a novel hypothetical protein that we suggest naming <it>t</it>emperature-<it>i</it>nduced, <it>v</it>irulence-associated locus <it>A</it>, <it>tivA</it>. Interestingly, the <it>deoB </it>mutant showed diminished entry into mammalian cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study identifying a <it>Francisella </it>gene that contributes to uptake into both phagocytic and non-phagocytic host cells.</p> <p>Conclusion</p> <p>Our results provide new insight into mechanisms of <it>Francisella </it>virulence regulation and pathogenesis. <it>F. tularensis </it>LVS undergoes considerable gene expression changes in response to mammalian body temperature. This temperature shift is important for the regulation of genes that are critical for the pathogenesis of <it>Francisella</it>. Importantly, the compilation of temperature-regulated genes also defines a rich collection of novel candidate virulence determinants, including <it>tivA </it>(FTL_1581). An analysis of <it>tivA </it>and <it>deoB </it>(FTL_1664) revealed that these genes contribute to intracellular survival and entry into mammalian cells, respectively.</p

    It\u27s Not Armageddon: A Practical Guide to Using the New Cataloging Code

    No full text
    • …
    corecore