898 research outputs found

    The impact of the Covid-19 crisis on socioeconomic differences in physical activity behavior:Evidence from the Lifelines COVID-19 cohort study

    Get PDF
    Covid-19 and measures to contain spreading the disease have led to changed physical activity behavior. This study aims to investigate the relationship between socioeconomic status (SES) and changes in the amount of moderate to vigorous physical activity (MVPA) during the Covid-19 crisis. Using the Dutch Lifelines Covid-19 cohort study (n = 17,749), the amount of MVPA was measured at 15 time-points between March and December 2020, and compared with the amount before the Covid19 pandemic. For SES, the population was stratified in three education and income levels. Logistic regression models were used to estimate the odds ratio (OR) and confidence interval (CI) of altered MVPA for low and high SES groups, with the middle SES category as the reference group. A clear socioeconomic gradient in changes in MVPA behavior was observed. Low educated individuals had significantly higher odds (OR = 1.14; CI: 1.03-1.27) of decreasing MVPA, while the high educated had significantly lower odds of decreased MVPA (OR = 0.84, CI: 0.79-0.90). Both low education (OR = 0.87; CI: 0.77-0.98) and low income (OR = 0.85; CI 0.78-0.92) had significantly lower odds to increase MVPA, while high education (OR = 1.21, CI: 1.12-1.30) and high income (OR = 1.17; CI: 1.07-1.28) had significantly higher odds to increase MVPA. Most findings were consistent over the full research period. Socioeconomic in-equalities in MVPA have increased during the Covid-19 pandemic, even when Covid-19 containment measures were relaxed. Our findings suggest that future public health policies need to increase efforts to improve physical activity behavior with an even larger focus on low SES groups

    Venous Thoracic Outlet Syndrome

    Get PDF
    Background: A 19-year-old woman, Academy of Sport student, noticed a progressive bluish discoloration, swelling and pain of the right hand and axilla during abduction. The symptoms had been progressive for 6 months. During physical examination there was a normal sensibility and motor function, and normal pulsations of the radial and ulnar artery. There was no significant medical history. A thorax aperture radiograph was performed, followed by venography of the right arm in neutral position and with abduction

    Temperature effects on dislocation core energies in silicon and germanium

    Full text link
    Temperature effects on the energetics of the 90-degree partial dislocation in silicon and germanium are investigated, using non-equilibrium methods to estimate free energies, coupled with Monte Carlo simulations. Atomic interactions are described by Tersoff and EDIP interatomic potentials. Our results indicate that the vibrational entropy has the effect of increasing the difference in free energy between the two possible reconstructions of the 90-degree partial, namely, the single-period and the double-period geometries. This effect further increases the energetic stability of the double-period reconstruction at high temperatures. The results also indicate that anharmonic effects may play an important role in determining the structural properties of these defects in the high-temperature regime.Comment: 8 pages in two-column physical-review format with six figure

    Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential

    Full text link
    Using molecular dynamics simulations we study the thermodynamic behavior of a single-component covalent material described by the recently proposed Environment-Dependent Interatomic Potential (EDIP). The parameterization of EDIP for silicon exhibits a range of unusual properties typically found in more complex materials, such as the existence of two structurally distinct disordered phases, a density decrease upon melting of the low-temperature amorphous phase, and negative thermal expansion coefficients for both the crystal (at high temperatures) and the amorphous phase (at all temperatures). Structural differences between the two disordered phases also lead to a first-order transition between them, which suggests the existence of a second critical point, as is believed to exist for amorphous forms of frozen water. For EDIP-Si, however, the unusual behavior is associated not only with the open nature of tetrahedral bonding but also with a competition between four-fold (covalent) and five-fold (metallic) coordination. The unusual behavior of the model and its unique ability to simulation the liquid/amorphous transition on molecular-dynamics time scales make it a suitable prototype for fundamental studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure

    Should we teach linear algebra through geometry?

    Get PDF
    AbstractCan geometry help students learn linear algebra? I study this question and demonstrate that there is no obvious clear answer: geometry can be an obstacle to learning linear algebra; or it can be helpful. Geometry is helpful only under certain conditions and with a specific use of drawings. These special requirements for using geometry are apparently not much recognized in our teaching of linear algebra courses, at least in France, where my educational studies have taken place

    Determination of 141Pr(alpha,n)144Pm cross sections at energies of relevance for the astrophysical p-process using the gamma-gamma coincidence method

    Get PDF
    The reaction 141Pr(alpha,n)144Pm was investigated between E_alpha=11 MeV and 15 MeV with the activation method using the gamma-gamma coincidence method with a segmented clover-type high-purity Germanium (HPGe) detector. Measurements with four other HPGe detectors were additionally made. The comparison proves that the gamma-gamma coincidence method is an excellent tool to investigate cross sections down to the microbarn range. The (alpha,n) reaction at low energy is especially suited to test alpha+nucleus optical-model potentials for application in the astrophysical p-process. The experimentally determined cross sections were compared to Hauser-Feshbach statistical model calculations using different optical potentials and generally an unsatisfactory reproduction of the data was found. A local potential was constructed to improve the description of the data. The consequences of applying the same potential to calculate astrophysical (gamma,alpha) rates for 145Pm and 148Gd were explored. In summary, the data and further results underline the problems in global predictions of alpha+nucleus optical potentials at astrophysically relevant energies.Comment: 13 pages, 9 figures, accepted in Phys. Rev.

    A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite I. The observational data

    Get PDF
    Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H2O and O2 in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm -- regions largely unobservable from the ground. Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486--492 and 541--576 GHz with rather uniform sensitivity (22--25 mK baseline noise). Odin's 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 hours each). An on-source integration time of 20 hours was achieved for most bands. The entire campaign consumed ~1100 orbits, each containing one hour of serviceable astro-observation. We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 1(1,0)--1(0,1) transitions of ortho-H2O, H218O and H217O, the high energy 6(2,4)--7(1,7) line of para-H2O and the HDO(2,0,2--1,1,1) line have been observed, as well as the 1,0--0,1 lines from NH3 and its rare isotopologue 15NH3. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the line wings of the H218O, H217O and 13CO lines changing the true linewidths of the outflow emission.Comment: 21 pages, 10 figures, 7 tables, accepeted for publication in Astronomy and Astrophysics 30 August 200

    Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton

    Get PDF
    Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as “bacterial microtubules” (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening

    The s Process: Nuclear Physics, Stellar Models, Observations

    Full text link
    Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear and atomic physics, and stellar modeling is reviewed and the corresponding interplay is illustrated by the general abundance patterns of the elements beyond iron and by the effect of sensitive branching points along the s-process path. The strong variations of the s-process efficiency with metallicity bear also interesting consequences for Galactic chemical evolution.Comment: 53 pages, 20 figures, 3 tables; Reviews of Modern Physics, accepte
    • …
    corecore