30 research outputs found

    Identification and Description of the Key Molecular Components of the Egg Strings of the Salmon Louse (Lepeophtheirus salmonis)

    Get PDF
    The salmon louse Lepeophtheirus salmonis is a parasite of Atlantic salmon and other salmonids. Every year, it causes high costs for the Norwegian aquaculture industry. While the morphology of the female genital tract has been described, knowledge of the molecular basis of reproduction is very limited. We identified nine genes which are expressed exclusively in the female cement gland, the organ responsible for cement production, which is used to hold the eggs together and keep them attached to their mother in egg strings. Six of these genes encode proteins with signal peptides and probably form the main component of the cement. Two other genes are peroxidases, which are probably important in the cement formation. The last gene is not similar to any known protein, but contains a transmembrane domain. A knockdown of all these genes leads to missing or deformed egg strings, preventing reproduction of the lice. The correct assemblage of the cement in the cement gland is essential for successful reproduction of salmon lice. Similar proteins seem to be present in other copepod species, as well.publishedVersio

    Evolution and differential expression of a vertebrate vitellogenin gene cluster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The multiplicity or loss of the vitellogenin (<it>vtg</it>) gene family in vertebrates has been argued to have broad implications for the mode of reproduction (placental or non-placental), cleavage pattern (meroblastic or holoblastic) and character of the egg (pelagic or benthic). Earlier proposals for the existence of three forms of vertebrate <it>vtgs </it>present conflicting models for their origin and subsequent duplication.</p> <p>Results</p> <p>By integrating phylogenetics of novel <it>vtg </it>transcripts from old and modern teleosts with syntenic analyses of all available genomic variants of non-metatherian vertebrates we identify the gene orthologies between the Sarcopterygii (tetrapod branch) and Actinopterygii (fish branch). We argue that the vertebrate <it>vtg </it>gene cluster originated in proto-chromosome m, but that <it>vtg </it>genes have subsequently duplicated and rearranged following whole genome duplications. Sequencing of a novel fourth <it>vtg </it>transcript in labrid species, and the presence of duplicated paralogs in certain model organisms supports the notion that lineage-specific gene duplications frequently occur in teleosts. The data show that the <it>vtg </it>gene cluster is more conserved between acanthomorph teleosts and tetrapods, than in ostariophysan teleosts such as the zebrafish. The differential expression of the labrid <it>vtg </it>genes are further consistent with the notion that neofunctionalized Aa-type <it>vtgs </it>are important determinants of the pelagic or benthic character of the eggs in acanthomorph teleosts.</p> <p>Conclusion</p> <p>The vertebrate <it>vtg </it>gene cluster existed prior to the separation of Sarcopterygii from Actinopterygii >450 million years ago, a period associated with the second round of whole genome duplication. The presence of higher copy numbers in a more highly expressed subcluster is particularly prevalent in teleosts. The differential expression and latent neofunctionalization of <it>vtg </it>genes in acanthomorph teleosts is an adaptive feature associated with oocyte hydration and spawning in the marine environment.</p

    Transcriptomic and targeted immune transcript analyses confirm localized skin immune responses in Atlantic salmon towards the salmon louse

    Get PDF
    Atlantic salmon (Salmo salar) are highly susceptible to infestations with the ectoparasite Lepeophtheirus salmonis, the salmon louse. Infestations elicit an immune response in the fish, but the response does not lead to parasite clearance, nor does it protect against subsequent infestations. It is, however, not known why the immune response is not adequate, possibly because the local response directly underneath the louse has been poorly evaluated. The present study describes the transcriptomic response by RNA sequencing of skin at the site of copepodid attachment. Analysing differentially expressed genes, 2864 were higher and 1357 were lower expressed at the louse attachment site compared to uninfested sites in the louse infested fish, while gene expression at uninfested sites were similar to uninfested control fish. The transcriptional patterns of selected immune genes were further detailed in three skin compartments/types: Whole skin, scales only and fin tissue. The elevation of pro-inflammatory cytokines and immune cell marker transcripts observed in whole skin and scale samples were not induced in fin, and a higher cytokine transcript level in scale samples suggest it can be used as a nonlethal sampling method to enhance selective breeding trials. Furthermore, the immune response was followed in both skin and anterior kidney as the infestation developed. Here, newly moulted preadult 1 stage lice induced a higher immune response than chalimi and adult lice. Overall, infestation with salmon louse induce a modest but early immune response with an elevation of mainly innate immune transcripts, with the response primarily localized to the site of attachment.publishedVersio

    Identification of critical enzymes in the salmon louse chitin synthesis pathway as revealed by RNA interference-mediated abrogation of infectivity

    Get PDF
    Treatment of infestation by the ectoparasite Lepeophtheirus salmonis relies on a small number of chemotherapeutant treatments that currently meet with limited success. Drugs targeting chitin synthesis have been largely successful against terrestrial parasites where the pathway is well characterised. However, a comparable approach against salmon lice has been, until recently, less successful, likely due to a poor understanding of the chitin synthesis pathway. Post-transcriptional silencing of genes by RNA interference (RNAi) is a powerful method for evaluation of protein function in non-model organisms and has been successfully applied to the salmon louse. In the present study, putative genes coding for enzymes involved in L. salmonis chitin synthesis were characterised after knockdown by RNAi. Nauplii I stage L. salmonis were exposed to double-stranded (ds) RNA specific for several putative non-redundant points in the pathway: glutamine: fructose-6-phosphate aminotransferase (LsGFAT), UDP-N-acetylglucosamine pyrophosphorylase (LsUAP), N-acetylglucosamine phosphate mutase (LsAGM), chitin synthase 1 (LsCHS1), and chitin synthase 2 (LsCHS2). Additionally, we targeted three putative chitin deacetylases (LsCDA4557, 5169 and 5956) by knockdown. Successful knockdown was determined after moulting to the copepodite stage by real-time quantitative PCR (RT-qPCR), while infectivity potential (the number of attached chalimus II compared with the initial number of larvae in the system) was measured after exposure to Atlantic salmon and subsequent development on their host. Compared with controls, infectivity potential was not compromised in dsAGM, dsCHS2, dsCDA4557, or dsCDA5169 groups. In contrast, there was a significant effect in the dsUAP-treated group. However, of most interest was the treatment with dsGFAT, dsCHS1, dsCHS1+2, and dsCDA5956, which resulted in complete abrogation of infectivity, despite apparent compensatory mechanisms in the chitin synthesis pathway as detected by qPCR. There appeared to be a common phenotypic effect in these groups, characterised by significant aberrations in appendage morphology and an inability to swim. Ultrastructurally, dsGFAT showed a significantly distorted procuticle without distinct exo/endocuticle and intermittent electron dense (i.e. chitin) inclusions, and together with dsUAP and dsCHS1, indicated delayed entry to the pre-moult phase.publishedVersio

    Salmon louse labial gland enzymes: implications for host settlement and immune modulation

    Get PDF
    Salmon louse (Lepeophtheirus salmonis) is a skin- and blood-feeding ectoparasite, infesting salmonids. While feeding, labial gland proteins from the salmon louse may be deposited on the Atlantic salmon (Salmo salar) skin. Previously characterized labial gland proteins are involved in anti-coagulation and may contribute to inhibiting Atlantic salmon from mounting a sufficient immune response against the ectoparasite. As labial gland proteins seem to be important in the host–parasite interaction, we have, therefore, identified and characterized ten enzymes localized to the labial gland. They are a large group of astacins named L. salmonis labial gland astacin 1–8 (LsLGA 1–8), one serine protease named L. salmonis labial gland serine protease 1 (LsLGSP1), and one apyrase named L. salmonis labial gland apyrase 1 (LsLGAp1). Protein domain predictions showed that LsLGA proteins all have N-terminal ShK domains, which may bind to potassium channels targeting the astacins to its substrate. LsLGA1 and -4 are, in addition, expressed in another gland type, whose secrete also meets the host–parasite interface. This suggests that LsLGA proteins may have an anti-microbial function and may prevent secondary infections in the wounds. LsLGAp1 is predicted to hydrolyze ATP or AMP and is, thereby, suggested to have an immune dampening function. In a knockdown study targeting LsLGSP1, a significant increase in IL-8 and MMP13 at the skin infestation site was seen under LsLGSP1 knockdown salmon louse compared to the control, suggesting that LsLGSP1 may have an anti-inflammatory effect. Moreover, most of the identified labial gland proteins are expressed in mature copepodids prior to host settlement, are not regulated by starvation, and are expressed at similar or higher levels in lice infesting the salmon louse-resistant pink salmon (Oncorhynchus gorbuscha). This study, thereby, emphasizes the importance of labial gland proteins for host settlement and their immune dampening function. This work can further contribute to anti-salmon louse treatment such as vaccine development, functional feed, or gene-edited salmon louse-resistant Atlantic salmon

    Whole genome sequencing of the fish pathogen Francisella noatunensis subsp. orientalis Toba04 gives novel insights into Francisella evolution and pathogenecity

    Get PDF
    Background: Francisella is a genus of gram-negative bacterium highly virulent in fishes and human where F. tularensis is causing the serious disease tularaemia in human. Recently Francisella species have been reported to cause mortality in aquaculture species like Atlantic cod and tilapia. We have completed the sequencing and draft assembly of the Francisella noatunensis subsp. orientalisToba04 strain isolated from farmed Tilapia. Compared to other available Francisella genomes, it is most similar to the genome of Francisella philomiragia subsp. philomiragia, a free-living bacterium not virulent to human. Results: The genome is rearranged compared to the available Francisella genomes even though we found no IS-elements in the genome. Nearly 16% percent of the predicted ORFs are pseudogenes. Computational pathway analysis indicates that a number of the metabolic pathways are disrupted due to pseudogenes. Comparing the novel genome with other available Francisella genomes, we found around 2.5% of unique genes present in Francisella noatunensis subsp. orientalis Toba04 and a list of genes uniquely present in the human-pathogenic Francisella subspecies. Most of these genes might have transferred from bacterial species through horizontal gene transfer. Comparative analysis between human and fish pathogen also provide insights into genes responsible for pathogenecity. Our analysis of pseudogenes indicates that the evolution of Francisella subspecies’s pseudogenes from Tilapia is old with large number of pseudogenes having more than one inactivating mutation. Conclusions: The fish pathogen has lost non-essential genes some time ago. Evolutionary analysis of the Francisella genomes, strongly suggests that human and fish pathogenic Francisella species have evolved independently from free-living metabolically competent Francisella species. These findings will contribute to understanding the evolution of Francisella species and pathogenesis

    Identification and Description of the Key Molecular Components of the Egg Strings of the Salmon Louse (Lepeophtheirus salmonis)

    No full text
    The salmon louse Lepeophtheirus salmonis is a parasite of Atlantic salmon and other salmonids. Every year, it causes high costs for the Norwegian aquaculture industry. While the morphology of the female genital tract has been described, knowledge of the molecular basis of reproduction is very limited. We identified nine genes which are expressed exclusively in the female cement gland, the organ responsible for cement production, which is used to hold the eggs together and keep them attached to their mother in egg strings. Six of these genes encode proteins with signal peptides and probably form the main component of the cement. Two other genes are peroxidases, which are probably important in the cement formation. The last gene is not similar to any known protein, but contains a transmembrane domain. A knockdown of all these genes leads to missing or deformed egg strings, preventing reproduction of the lice. The correct assemblage of the cement in the cement gland is essential for successful reproduction of salmon lice. Similar proteins seem to be present in other copepod species, as well

    Molecular characterisation of the salmon louse, Lepeophtheirus salmonis salmonis (Krøyer, 1837), ecdysone receptor with emphasis on functional studies of female reproduction

    Get PDF
    The salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) is an important parasite in the salmon farming industry in the Northern Hemisphere causing annual losses of hundreds of millions of dollars (US) worldwide. To facilitate development of a vaccine or other novel measures to gain control of the parasite, knowledge about molecular biological functions of L. salmonis is vital. In arthropods, a nuclear receptor complex consisting of the ecdysone receptor and the retinoid X receptor, ultraspiracle, are well known to be involved in a variety of both developmental and reproductive processes. To investigate the role of the ecdysone receptor in the salmon louse, we isolated and characterised cDNA with the 5′untranslated region of the predicted L. salmonis EcR (LsEcR). The LsEcR cDNA was 1608 bp encoding a 536 amino acid sequence that demonstrated high sequence similarities to other arthropod ecdysone receptors including Tribolium castaneum and Locusta migratoria. Moreover, in situ analysis of adult female lice revealed that the LsEcR transcript is localised in a wide variety of tissues such as ovaries, sub-cuticula and oocytes. Knock-down studies of LsEcR using RNA interference terminated egg production, indicating that the LsEcR plays important roles in reproduction and oocyte maturation. We believe this is the first report on the ecdysone receptor in the economically important parasite L. salmonis
    corecore