6 research outputs found
Gains and losses of coral skeletal porosity changes with ocean acidification acclimation
Ocean acidi\ufb01cation is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic bene\ufb01ts these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 micrometers) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton\u2019s structural features are not
altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean
Quantitative morphological analysis of 2D images of complex-shaped branching biological growth forms: the example of branching thalli of liverworts
International audienceBackgroundMany organisms such as plants can be characterized as complex-shaped branching forms. The morphological quantification of the forms is a support for a number of areas such as the effects of environmental factors and species discrimination. To date, there is no software package suitable for our dataset representing the forms. We therefore formulate methods for extracting morphological measurements from images of the forms.ResultsAs a case study we analyze two-dimensional images of samples from four groups belonging to three species of thalloid liverworts, genus Riccardia. The images are pre-processed and converted into binary images, then skeletonized to obtain a skeleton image, in which features such as junctions and terminals are detected. Morphological measurements known to characterize and discriminate the species in the samples such as junction thickness, branch thickness, terminal thickness, branch length, branch angle, and terminal spacing are then quantified. The measurements are used to distinguish among the four groups of Riccardia and also between the two groups of Riccardia amazonica collected in different locations, Africa and South America. Canonical discriminant analysis results show that those measurements are able to discriminate among the four groups. Additionally, it is able to discriminate R. amazonica collected in Africa from those collected in South America.ConclusionsThis paper presents general automated methods implemented in our software for quantifying two-dimensional images of complex branching forms. The methods are used to compute a series of morphological measurements. We found significant results to distinguish Riccardia species by using the measurements. The methods are also applicable for analyzing other branching organisms. Our software is freely available under the GNU GPL
MOESM2 of Quantitative morphological analysis of 2D images of complex-shaped branching biological growth forms: the example of branching thalli of liverworts
Additional file 2: Figure SI1. Measurements of sample images of species Riccarida amazonica African group (Row No. 1, 2), Riccardia amazonica South-American group (Row No. 3, 4), Riccardia compacta (Row No. 5, 6), and Riccardia obtusa (Row No. 7, 8). (a) Original binary image. (b) Skeleton (green), Junctions (pink), Terminals (blue). (c) Contour (light blue). (d) Junction thickness (red), Branch thickness (gray), (e) Branch length. (f) Terminal thickness (green), Branch spacing (white)
Gains and losses of coral skeletal porosity changes with ocean acidification acclimation
Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 μm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton’s structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean
Gains and losses of coral skeletal porosity changes with ocean acidification acclimation
Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 μm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton's structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean