10,135 research outputs found

    Statistical experimental methods for optimizing the cultivating conditions for Rhodococcus erythropolis

    Get PDF
    Rhodococcus erythropolis was found to effectively degrade aflatoxin Bl produced by Aspergillus flavus and Aspergillus parasiticus. However, one problem of concern was the slow growth of this strain. In this study, Plackett–Burman design was used to select the most important variables, namely, temperature, pH, inoculum size, liquid volume, agitation speed and culture time that affected the growth of R. erythropolis. Central composite experimental design and response surface analysis were adopted to derive a statistical model for optimizing the culture conditions. From the obtained results, it can be concluded that the optimum parameters were: temperature, 15.3°C; pH, 5.56; inoculum size, 4%; liquid volume, 70 ml in 250 ml flask; agitation speed, 180 rpm; and culture time, 58.2 h. At this optimum point, the populations of the viable organisms could reach 108 colony forming units (CFU)/ml, which was 100 times higher than that incubated under the initial conditions. After 58.2 h incubation in this optimum cultivating conditions, 53.9 ± 2.1% of aflatoxin B1 was degraded, while only 20.6±1.4% of aflatoxin B1 was degraded in the initial conditions.Key words: Rhodococcus erythropolis, culture condition, optimization, Plackett–Burman design, central composite design, response surface methodology

    Porous structure and adsorptive properties of hide waste activated carbons prepared via potassium silicate activation

    Full text link
    © 2014 Elsevier B.V. A novel activating agent, potassium silicate, was employed in the preparation of hide waste activated carbon. Effects of different activation temperatures and impregnation ratios on porous activated carbon evolution were evaluated by nitrogen adsorption/desorption. The BET specific surface area and pore volume of prepared activated carbon could attain 2046.12 m2/g and 1.068 cm3/g, when the process of preparation carried out at the best conditions (activation temperature of 700 °C and the impregnation ratio of 2:1). Methylene blue (MB) was selected as the adsorbate to evaluate its adsorption property. Adsorption results can be fitted well by the Langmuir isotherm, indicating the maximum monolayer adsorption capacity of MB reached to 769.23 mg/g
    • …
    corecore