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ABSTRACT: The development of switchable adhesives for reversible bonding and
debonding can overcome the problems associated with conventional adhesives in
separating, recycling, and repairing glued surfaces. Here, a photoresponsive
azobenzene-containing polymer (azopolymer) is developed for photocontrolled
adhesion. The azopolymer P1 (poly(6-(4-(p-tolyldiazenyl)phenoxy)hexyl acrylate))
exhibits photoinduced reversible solid-to-liquid transitions due to trans−cis
photoisomerization. Trans P1 is a solid that glues two substrates with a stiffness
comparable to that of conventional adhesives. UV light induces trans-to-cis
isomerization, liquefies P1, weakens the adhesion, and facilitates the separation of
glued substrates. Conversely, visible light induces cis-to-trans isomerization, solidifies
P1, and enhances the adhesion. P1 enables photocontrolled reversible adhesion for
various substrates with different wettability, chemical compositions, and surface
roughness. P1 can also be implemented in both dry and wet environments. Light can
control the adhesion process with high spatiotemporal resolution when using P1 as a
switchable adhesive. Photoinduced reversible solid-to-liquid transitions represent a strategy for materials recycling and
automated production processes that require reversible bonding and debonding.

Adhesives are materials that bind two separate surfaces
together and resist separation. Adhesives are widely used

in daily life, from the packing industry to the construction of
complex structures such as skyscrapers, furniture, and ships.
The development of novel adhesives for new applications (e.g.,
automated production and controlling the adhesion of
biomaterials) is currently an emerging topic of intense
investigation.1−7 Surfaces glued by conventional adhesives
are difficult to separate, making the separation and reuse of the
surfaces inconvenient. In particular, some applications require
that glued surfaces are easily separable for recycling or repair.
Thus, switchable adhesives, which reversibly bond surfaces on
demand, are better suited for material separation and recycling,
automated production processes, and the repair of joints.
Switchable adhesives are usually based on reversible

chemical or physical processes such as supramolecular
interactions,8−16 reversible reactions,17−21 and reversible
phase or topology transitions.22−26 On one hand, switchable
host−guest interactions have been applied to control under-
water adhesion.14−16 On the other hand, switchable com-
pounds and dynamic materials have been used to control dry

adhesion.17−19,27,28 Switchable adhesives based on supra-
molecular interactions usually require grafting supramolecular
adhesives on substrates via chemical reactions. Grafting
adhesives on substrates make the use of such switchable
adhesives inconvenient. Although switchable adhesives based
on dynamic carbon frameworks do not need chemical
modification of substrates, they only work at high temperatures
(70−135 °C) because of their liquid crystal nature in that
temperature range.17 In comparison, switchable adhesives that
work at ambient temperature are more practical. Furthermore,
no adhesive, which can reversibly control the adhesion
between different substrates and operate in both dry and wet
environments, has been demonstrated.
Here, we report on the design of a novel switchable adhesive

that works in both dry and wet environments at ambient
temperature for different substrates. The switchable adhesive is
based on photoinduced reversible solid-to-liquid transitions of
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an azopolymer (Figure 1). Some azobenzene compounds show
photoinduced reversible solid-to-liquid transitions.19,28−30 In

particular, we recently demonstrated that the poly(6-(4-(p-
tolyldiazenyl)phenoxy)hexyl acrylate) (P1) exhibits photo-
induced reversible solid-to-liquid transitions due to reversible
trans−cis photoisomerization.29 Our hypothesis is that P1 in
the solid state does not have sufficient chain mobility for
separation, while P1 in the liquid state has sufficient chain
mobility for separation. In this work, we show that trans P1 is a
solid that can firmly bond two substrates. Cis P1 is generated
via UV-light-induced trans-to-cis isomerization. Cis P1 is a
liquid with weak adhesion that facilitates the separation of the
surfaces. Trans P1 can be regenerated by irradiating cis P1 with
visible light. Thus, photoinduced reversible solid-to-liquid
transitions make the adhesion of P1-glued substrates switch-
able (Figure 1b). We demonstrate that P1 is a reversible
adhesive for different substrates and shows switchable adhesion
in both dry and wet environments at ambient temperature.
P1 was synthesized using the synthetic route in the

Supporting Information (Figure S1).29 Because trans−cis
photoisomerization changes glass transition temperatures of
azopolymers,29,31 P1 can be reversibly liquefied and solidified
upon UV and visible light irradiation (Figure 1a). Based on
this, we studied photocontrolled adhesion using lap joint shear
strength tests (Figure 2a). Two quartz substrates were firmly
glued with trans P1 (glued area: 0.375 cm2), mounted on a
universal testing machine, and pulled until failure. The
measured adhesion strength was ∼1.02 MPa, which is higher
than that of small-molecule azobenzene adhesives.19,27

Irradiation of trans P1 with UV light switched the polymer
to the cis form (Figure S2). The adhesion strength of cis P1
was ∼0.08 MPa, which was only 7.8% of that of trans P1. The
reduction in adhesion occurred because of the photoinduced
solid-to-liquid transition of P1 (Figure 1a), which increases the
mobility of polymer chains.29 Thus, photoisomerization eases
the separation of the glued substrates.
The adhesion of trans P1 was so strong that a bottle of water

(∼500 g) was sustained using the glued substrates (Figure 2b).
UV irradiation weakened the adhesion, and the bottle dropped

after UV irradiation for ∼1 min (see the bottle on the left side
of Figure 2b and Movie S1). For comparison, P1-glued
substrates without UV irradiation (Figure 2b, right) sustained a
bottle of water with the same weight. UV−vis absorption
spectroscopy showed that trans P1 was switched to the cis-P1-
rich state within a minute. Thus, the adhesion change was in
the same time scale of photoisomerization.
Photoinduced reversible solid-to-liquid transitions make P1

a reusable adhesive (Figure 2c). To reuse P1 with the
assistance of light, P1 was liquefied on two separated quartz
substrates via UV-light-induced trans-to-cis isomerization.
Then, the substrates were pressed to form a joint. The
liquefied P1 wetted the surfaces. Subsequently, P1 was
solidified via visible-light-induced cis-to-trans isomerization,
which then increased the adhesion. We tested the adhesion of
P1 for three photoisomerization cycles (Figure 2c, purple line).
The adhesion strength of the reused P1 was more than 68% of
its original strength.
We also demonstrated the reuse of P1 assisted by

dichloromethane, which has a low boiling temperature and
can be removed easily after use (Figure 2c, orange line).
Dichloromethane (10 μL) was added to the debonded P1
layers on two separated quartz substrates, which increased the
mobility of P1 for wetting the substrates. Then, the substrates
were pressed to form a joint. P1 was hardened by evaporating
dichloromethane in a fume hood for 24 h. The adhesion

Figure 1. (a) Photoisomerization of the azopolymer P1 induces
reversible solid-to-liquid transitions. The insets are optical microscopy
images of P1 powders before and after UV irradiation. (b) Schematic
illustration of the photoswitchable adhesion of P1-glued substrates.
Trans P1 has strong adhesion that can sustain the load. In contrast, cis
P1 has weak adhesion, and photoisomerization causes the load to fall.

Figure 2. (a) Lap joint shear strength tests with two quartz substrates
glued with trans (blue) and cis (red) P1. The inset is a photograph
showing P1-glued quartz substrates on the universal testing machine.
(b) Snapshots show photocontrolled adhesion (also see Movie S1 in
the Supporting Information). Sample on the left: trans-P1-glued
quartz substrates holding a bottle of water (∼500 g). The bottle fell
after UV irradiation. Sample on the right: a control experiment
showing that the P1-glued substrates held the bottle of water when P1
was not irradiated. (c) Light-assisted and solvent-assisted reuse of the
adhesive.
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strength of trans P1 was measured after the drying process,
whereas the adhesion strength of cis P1 was measured after
both the drying process and subsequent UV irradiation. We
tested the adhesion of P1 for three cycles (Figure 2c, orange
line). The adhesion strength of the reused P1 was more than
87% of its original strength.
To test whether photoswitchable adhesion is generally

applicable to different substrates, we studied different
substrates that were glued with P1. First, we used three
types of quartz substrates with different wettability (Figure 3a).
The first substrate was a native quartz substrate (as purchased)
with a static water contact angle of 27 ± 5°. Superhydrophilic
substrates (static water contact angle <5°) were prepared by
sonicating quartz in an ethanol solution of KOH (4 mol/L) for
30 min and washed with water. More hydrophobic substrates
(static water contact angle: 89 ± 5°) were prepared by

exposing quartz to 1,1,1,3,3,3-hexamethyldisilazane vapor in a
sealed tube for 24 h. Trans P1 firmly bonded all three types of
substrates (Figure 3b). UV irradiation induced trans-to-cis
isomerization and reduced the adhesion for all three types of
substrates. The adhesion strengths of the P1-glued substrates
were independent of the wettability. The reason is that the
failure was within the P1 layer (see more discussion below).
We also studied the adhesion of different P1-glued

substrates such as quartz/quartz, quartz/plastic, quartz/silicon
wafer, quartz/steel, and quartz/paper (Figure 3c). The
adhesion strengths of all trans-P1-glued substrates were
0.96−1.17 MPa. UV-light-induced trans-to-cis isomerization
reduced adhesion. The results showed that the photo-
switchable adhesive is applicable to different substrates. The
adhesion strengths of the trans and cis P1-glued quartz/paper
were the highest for all tested samples. We noticed that the
paper had a rough surface (Figure S3), which could enhance
adhesion.
To further investigate how surface roughness influences

adhesion, we compared P1-glued quartz (flat, RMS roughness
of 0.9 nm), frosted quartz (rough, RMS roughness of 111.2
nm), and pillar-structured substrates (Figure 3d and Figure
S4). All the studied samples exhibited photoswitchable
adhesion (Figure 3e). Trans P1 had stronger adhesion than
cis P1. In addition, both P1-glued frosted quartz and pillar-
structured substrates had stronger adhesion than P1-glued flat
quartz. We infer that increased surface roughness enhanced
adhesion due to the increased effective contact areas of the
substrates.
After the lap joint shear strength tests, all of the fracture

surfaces of the samples in Figure 3 were within the azopolymer
layer; i.e., the failure was within the polymer layer. Thus, the
adhesion strengths were on the same order of magnitude for
different substrates. We made drop-cast films of P1 on a glass
substrate and a Teflon substrate. We tried to separate P1/glass
and P1/Teflon. The failure was always within the P1 layer.
These experiments demonstrated again that the interaction
within the P1 layer was weaker than those between P1 and the
substrates. These results coincide with the results in Figure 3c:
When different substrates glued with P1 were separated, the
failure was always within the P1 layer. When two substrates are
glued using P1, the adhesion is switchable because photo-
induced reversible solid-to-liquid transitions of P1 change the
intrinsic interactions of the azopolymer chains. The above-
mentioned results demonstrate that P1 is a novel photo-
switchable adhesive for different substrates.
We have demonstrated photocontrolled dry adhesion using

P1. The next question is whether we can control underwater
adhesion with light. We studied photocontrolled underwater
adhesion using P1-glued quartz. Trans P1 firmly bonded quartz
substrates and consequently lifted a copper block (2.6 kg) in
water (Figure 4a). UV-light-induced trans-to-cis isomerization
dramatically reduced adhesion. As a result, the copper block
fell after UV irradiation within a minute (Movie S2). Switching
underwater adhesion was achieved.
We quantified the underwater adhesion using tensile tests

(Figure 4b). The underwater adhesion of trans-P1-glued quartz
was ∼0.93 MPa. UV irradiation reduced the underwater
adhesion to ∼0.08 MPa. We further investigated the
reversibility of underwater adhesion under light-assisted and
solvent-assisted processes (see more details in the Supporting
Information). For the light-assisted process, two separated, wet
quartz substrates with P1 adhesives were irradiated with UV

Figure 3. Photoswitchable adhesion of P1 on different substrates. (a)
Profiles of a water droplet on substrates with different wettability. (b)
Photoswitchable adhesion of P1-glued substrates with different
wettability. (c) Photoswitchable adhesion of various P1-glued
substrates. The insets are photographs of different substrates glued
with trans P1 and separated after trans−cis photoisomerization. (d)
SEM images of a flat quartz substrate, a frosted quartz substrate, and a
substrate with an array of pillars (scale bars are 5 μm). (e)
Photoswitchable adhesion of P1-glued flat quartz substrates, frosted
quartz substrates, and pillar-structured substrates.
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light (365 nm, 71 mW/cm2, 15 min). The substrates with
liquefied P1 were then clamped. Subsequent exposure to
visible light (530 nm, 5 mW/cm2, 15 min) solidified P1 and
regenerated trans-P1-glued substrates, which had ∼46% of the
original adhesion strength. The partial recovery may be due to
the fact that water on the surface hinders the contact of
azopolymer chains. We also tested reversibility via a solvent-
assisted process. Two separated substrates were dried in an
oven at 40 °C for 24 h. Then, dichloromethane (10 μL) was
added to the cracked P1 on the substrates. The substrates were
clamped and placed under a load (50 g) in a fume hood for 24
h before the underwater adhesion measurement. The under-
water adhesion regenerated via the solvent-assisted process was
∼85% of the original process. For the solvent-assisted process,
P1 was dissolved in dichloromethane, which formed a solution
with much lower viscosity than that of cis P1. As a result, the
surfaces could be wetted by the solution much better and the
substrates were glued together with less imperfection. There-
fore, the solvent-assisted process showed better recovery
performance as compared to that of the light-assisted process.
In conclusion, azopolymer P1 is a switchable adhesive that

can bond, debond, and rebond different substrates on demand.
We also demonstrated the control of underwater adhesion
using P1. The switchable adhesion is attributed to the novel
photoinduced reversible solid-to-liquid transitions of P1. In
contrast to other reversible adhesives, P1 does not require
surface treatment of the substrates, allowing for a simple and
efficient route to reversibly bond and separate surfaces.
Another advantage of our method is that light has a high
spatiotemporal resolution and can precisely control adhesion
without contact. Our work also shows that reversible solid-to-
liquid transitions could be a general strategy for designing
switchable adhesives. We expect that photoinduced reversible
solid-to-liquid transitions will further improve materials
recycling and automated production processes that require
reversible bonding and debonding.
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