66 research outputs found

    A 550,000-year record of East Asian monsoon rainfall from Be-10 in loess

    Get PDF
    Cosmogenic Be-10 flux from the atmosphere is a proxy for rainfall. Using this proxy, we derived a 550,000-year-long record of East Asian summer monsoon (EASM) rainfall from Chinese loess. This record is forced at orbital precession frequencies, with higher rainfall observed during Northern Hemisphere summer insolation maxima, although this response is damped during cold interstadials. The Be-10 monsoon rainfall proxy is also highly correlated with global ice-volume variations, which differs from Chinese cave delta O-18, which is only weakly correlated. We argue that both EASM intensity and Chinese cave delta O-18 are not governed by high-northern-latitude insolation, as suggested by others, but rather by low-latitude interhemispheric insolation gradients, which may also strongly influence global ice volume via monsoon dynamics

    Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection

    Get PDF
    Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially highly sensitive tool for malaria diagnosis. A key challenge for making MRR based malaria diagnostics suitable for clinical testing is the fact that MRR baseline fluctuation exists between individuals, making it difficult to detect low level parasitemia. To overcome this problem, it is important to establish the MRR baseline of each individual while having the ability to reliably determine any changes that are caused by the infection of malaria parasite. Here we show that an approach that combines the use of microfluidic cell enrichment with a saponin lysis before MRR detection can overcome these challenges and provide the basis for a highly sensitive and reliable diagnostic approach of malaria parasites. Importantly, as little as 0.0005% of ring stage parasites can be detected reliably, making this ideally suited for the detection of malaria parasites in peripheral blood obtained from patients. The approaches used here are envisaged to provide a new malaria diagnosis solution in the near future.Singapore-MIT Alliance for Research and Technology Cente

    Strong [O III] {\lambda}5007 Compact Galaxies Identified from SDSS DR16 and Their Scaling Relations

    Full text link
    Green pea galaxies are a special class of star-forming compact galaxies with strong [O III]{\lambda}5007 and considered as analogs of high-redshift Ly{\alpha}-emitting galaxies and potential sources for cosmic reionization. In this paper, we identify 76 strong [O III]{\lambda}5007 compact galaxies at z < 0.35 from DR1613 of the Sloan Digital Sky Survey. These galaxies present relatively low stellar mass, high star formation rate, and low metallicity. Both star-forming main sequence relation (SFMS) and mass-metallicity relation (MZR) are investigated and compared with green pea and blueberry galaxies collected from literature. It is found that our strong [O III] {\lambda}5007 compact galaxies share common properties with those compact galaxies with extreme star formation and show distinct scaling relations in respect to those of normal star-forming galaxies at the same redshift. The slope of SFMS is higher, indicates that strong [O III]{\lambda}5007 compact galaxies might grow faster in stellar mass. The lower MZR implies that they may be less chemically evolved and hence on the early stage of star formation. A further environmental investigation confirms that they inhabit relatively low-density regions. Future largescale spectroscopic surveys will provide more details on their physical origin and evolution.Comment: 12 pages, 8 figures, 1 table. Published in A

    The 10Be record as a proxy of paleomagnetic reversals and excursions: A Mediterranean perspective

    Get PDF
    The 10Be/9Be ratio is acknowledged as an effective tool for establishing the stratigraphic position of paleomagnetic excursions. Still, our data suggest that, in particular depositional settings, the interplay between climate, sedimentation and oceanography may jeopardize a realistic depiction of the natural 10Be/9Be record

    Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    Get PDF
    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark

    Chinese Painting Style Transfer Using Deep Generative Models

    Full text link
    Artistic style transfer aims to modify the style of the image while preserving its content. Style transfer using deep learning models has been widely studied since 2015, and most of the applications are focused on specific artists like Van Gogh, Monet, Cezanne. There are few researches and applications on traditional Chinese painting style transfer. In this paper, we will study and leverage different state-of-the-art deep generative models for Chinese painting style transfer and evaluate the performance both qualitatively and quantitatively. In addition, we propose our own algorithm that combines several style transfer models for our task. Specifically, we will transfer two main types of traditional Chinese painting style, known as "Gong-bi" and "Shui-mo" (to modern images like nature objects, portraits and landscapes.Comment: Paper is too old (written in 2019

    Multifurnace optimization in electric smelting plants via load scheduling and control

    No full text
    For large electricity users, such as smelting plants, their electric loads cannot exceed a concerted limit in production. Traditional single-furnace optimization methods aim to satisfy the electric demand of a furnace to improve its production, and hence cannot consider the maximum demand constraint in a smelting plant. Maximum demand (MD) control is often utilized to keep the total electric demand within the limit via shedding the electric loads of some furnaces once the demand approaches the limit. However, the control method will enlarge the fluctuation of electric loads, which does harm to the production and causes a decline in energy-efficiency. In this paper, we propose a multifurnace optimization strategy to improve the production targets of a whole plant instead of a single furnace. In the strategy, an offline multiobjective load scheduling is first performed to assign electric loads for furnaces in each sampling period, taking into account of the MD constraint and production constraints. A multiobjective particle swarm optimization algorithm, combined with population initialization and constraint-handing strategies, is proposed to search for the Pareto optimal set of the scheduling problem, from which decision-makers can select one solution as the load scheduling program. A double closed-loop control mechanism is used to change the scheduled load into detailed load setpoints of furnaces and keep the actual loads up with the load setpoints. In the outer loop, the detailed load setpoints of furnaces are dynamically adjusted based on the deviation of actual loads from the scheduled loads. Thereafter, the desired setpoints are sent to the automatic control mechanism of each furnace, which is in the inner loop and responsible to keep the actual load up with the setpoint via a proportional-integral-derivative (PID) controller. The case study on a typical magnesia-smelting plant shows that the proposed multifurnace optimization strategy can achieve an increase of- about 12.29% in the production output, an improvement of about 0.46% of the magnesia in the product, and a slight reduction of 2.35% in electricity cost over the results of MD control

    An improved long short-term memory neural network for stock forecast

    No full text
    This paper presents an improved long short-term memory (LSTM) neural network based on particle swarm optimization (PSO), which is applied to predict the closing price of the stock. PSO is introduced to optimize the weights of the LSTM neural network, which reduces the prediction error. After preprocessing the historical data of the stock, including opening price, closing price, highest price, lowest price, and daily volume these five attributes, we train the LSTM by employing time series of the historical data. Finally, we apply the proposed LSTM to predict the closing price of the stock in the last two years. Compared with typical algorithms by simulation, we find the LSTM has better performance in reliability and adaptability, and the improved PSO-LSTM algorithm has better accuracy

    An improved long short-term memory neural network for stock forecast

    No full text
    This paper presents an improved long short-term memory (LSTM) neural network based on particle swarm optimization (PSO), which is applied to predict the closing price of the stock. PSO is introduced to optimize the weights of the LSTM neural network, which reduces the prediction error. After preprocessing the historical data of the stock, including opening price, closing price, highest price, lowest price, and daily volume these five attributes, we train the LSTM by employing time series of the historical data. Finally, we apply the proposed LSTM to predict the closing price of the stock in the last two years. Compared with typical algorithms by simulation, we find the LSTM has better performance in reliability and adaptability, and the improved PSO-LSTM algorithm has better accuracy
    corecore