11 research outputs found

    Evaluation of Anti-tumor and Chemoresistance-lowering Effects of Pectolinarigenin from Cirsium japonicum Fisch ex DC in Breast Cancer

    Get PDF
    Purpose: To investigate the antitumor and chemoresistance-lowering effects of pectolinarigenin on breast cancer cells.Methods: Pectolinarigenin was purified by a combination of silica gel and Sephadex LH-20 column chromatography from ethanol extracts of the aerial parts of C. japonicum DC. Breast cancer selfrenewal properties were tested by colony formation and tumor sphere formation assays. Thereafter, real-time polymerase chain reaction (PCR) was used to detect breast cancer stem cell markers. Furthermore, the effect of pectolinarigenin on breast cancer cell was evaluated by chemoresistance using 3-(4,5-dimethyl-2 thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Finally, tumor formation in nude mice was used to test the effect of pectolinarigenin on tumorigenicity of breast cancer cells in vivo.Results: The results showed that pectolinarigenin, extracted from Cirsium japonicum Fisch. ex DC., inhibited tumor cell self-renewal in MCF-7 breast cancer cells. Pectolinarigenin (25 μM) caused significant inhibition of colony formation (61.23 %, p < 0.001) and tumor sphere formation (59.49 %, p < 0.01) in MCF-7. The inhibitory effects were associated with changes in breast cancer stem cell markers. Treatment of breast cancer cells with pectolinarigenin reduced the chemoresistance of the cells to doxorubicin. At the same time, mRNA expression of chemoresistance genes (ATP binding cassette subfamily G member 2, ABCG2 and ATP binding cassette subfamily B member 1, MDR1) was repressed by pectolinarigenin. The inhibition efficiency of MDR1 and ABCG2 by 10 μM pectolinarigenin treatment was about 59.29 (p < 0.01) and 46.48 % (p < 0.01), respectively. Furthermore, pectolinarigenin reduced tumor mass in nude mice xenograft model.Conclusion: Pectolinarigenin inhibits breast cancer stem cell-like properties and lowers the chemoresistance of the cancer cells to chemotherapy. The results provide an insight into the mechanism of the anti-breast tumor effects and an experimental basis for the use of pectolinarigenin to enhance treatment of patients with breast cancer.Keywords: Pectolinarigenin, Cancer stem cells, Breast cancer, Chemoresistance, Cirsium japonicum Fisch. ex D

    Dedicated to

    No full text
    COPYRIGHT WARNING You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form

    Antifungal mechanisms of lavender essential oil in the inhibition of rot disease caused by Monilinia fructicola in postharvest flat peaches

    No full text
    As a natural antimicrobial agent, lavender essential oil (LEO) is generally recognized to be safe and effective in the inhibition of phytopathogenic fungi. Direct contact and fumigation (in vivo and in vitro) were used to study the fungistatic effect of LEO on Monilinia fructicola. Additionally, the effect on the ultrastructure of cells and degree of destruction of the cell membrane of M. fructicola were revealed. In addition, the effects of LEO on the expression levels of particular apoptosis-related genes in M. fructicola cells were detected and GC-MS was used to analyse the main components of LEO. LEO had a good inhibitory efficacy against M. fructicola in flat peaches, with almost complete growth inhibition with 800 μL / L. These effects were associated with leakage of cytoplasm contents, hyphal distortion and spore disruption. Moreover, the expression of apoptosis RTG1 and RLM1 genes increased on LEO treatment. These results demonstrate that LEO can inhibit M. fructicola by inducing cytoplasmic membrane damage and cell apoptosis of fungi and that the major ingredients of LEO are monoterpenes and sesquiterpenes which are presumed to contribute to the inhibitory effects.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore