33 research outputs found

    Affinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array: Identification of novel peptidic inhibitors.

    Get PDF
    MDM2 and MDMX are oncoproteins that negatively regulate the activity and stability of the tumor suppressor protein p53. The inhibitors of protein-protein interactions (PPIs) of MDM2-p53 and MDMX-p53 represent potential anticancer agents. In this study, a novel approach for identifying MDM2-p53 and MDMX-p53 PPI inhibitor candidates by affinity-based screening using a chemical array has been established. A number of compounds from an in-house compound library, which were immobilized onto a chemical array, were screened for interaction with fluorescence-labeled MDM2 and MDMX proteins. The subsequent fluorescent polarization assay identified several compounds that inhibited MDM2-p53 and MDMX-p53 interactions

    SARS-CoV-2 disrupts respiratory vascular barriers by suppressing Claudin-5 expression

    Get PDF
    臓器チップ技術を用いて新型コロナウイルスが血管へ侵入するメカニズムを解明 --Claudin-5発現抑制による呼吸器の血管内皮バリア破壊--. 京都大学プレスリリース. 2022-09-22.A study using an organ-on-a-chip reveals a mechanism of SARS-CoV-2 invasion into blood vessels --Disruption of vascular endothelial barrier in respiratory organs by decreasing Claudin-5 expression--. 京都大学プレスリリース. 2022-09-27.In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin–mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2–induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2–induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19

    時間分解拡散観測による光回復酵素・クリプトクロム蛋白質における構造変化および分子間相互作用ダイナミクスの研究

    Get PDF
    京都大学0048新制・課程博士博士(理学)甲第15890号理博第3631号新制||理||1529(附属図書館)28469京都大学大学院理学研究科化学専攻(主査)教授 寺嶋 正秀, 教授 竹腰 清乃理, 教授 松本 吉泰学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDA

    Light-Induced Conformational Changes in Full-Length Arabidopsis thaliana Cryptochrome.

    Get PDF
    Cryptochromes (CRYs) are widespread flavoproteins with homology to photolyases (PHRs), a class of blue-light-activated DNA repair enzymes. Unlike PHRs, both plant and animal CRYs have a C-terminal domain. This cryptochrome C-terminal (CCT) domain mediates interactions with other proteins, while the PHR-like domain converts light energy into a signal via reduction and radical formation of the flavin adenine dinucleotide cofactor. However, the mechanism by which the PHR-like domain regulates the CCT domain is not known. Here, we applied the pulsed-laser-induced transient grating method to detect conformational changes induced by blue-light excitation of full-length Arabidopsis thaliana cryptochrome 1 (AtCRY1). A significant reduction in the diffusion coefficient of AtCRY1 was observed upon photoexcitation, indicating that a large conformational change occurs in this monomeric protein. AtCRY1 containing a single mutation (W324F) that abolishes an intra-protein electron transfer cascade did not exhibit this conformational change. Moreover, the conformational change was much reduced in protein lacking the CCT domain. Thus, we conclude that the observed large conformational changes triggered by light excitation of the PHR-like domain result from C-terminal domain rearrangement. This inter-domain modulation would be critical for CRYs' ability to transduce a blue-light signal into altered protein-protein interactions for biological activity. Lastly, we demonstrate that the transient grating technique provides a powerful method for the direct observation and understanding of photoreceptor dynamics

    Familial isolated noncompaction of ventricular myocardium

    No full text

    Importance of Atomic Contacts in Vibrational Energy Flow in Proteins

    No full text
    Vibrational energy flow in proteins was studied by monitoring the time-resolved anti-Stokes ultraviolet resonance Raman scattering of three myoglobin mutants in which a Trp residue substitutes a different amino acid residue near heme. The anti-Stokes Raman intensities of the Trp residue in the three mutants increased with similar rates after depositing excess vibrational energy at heme, despite the difference in distance between heme and each substituted Trp residue along the main chain of the protein. This indicates that vibrational energy is not transferred through the main chain of the protein but rather through atomic contacts between heme and the Trp residue. Distinct differences were observed in the amplitude of the band intensity change between the Trp residues at different positions, and the amplitude of the band intensity change exhibits a correlation with the extent of exposure of the Trp residue to solvent water. This correlation indicates that atomic contacts between an amino acid residue and solvent water play an important role in vibrational energy flow in a protein
    corecore