64 research outputs found

    Predicting rice (Oryza sativa L.) canopy temperature difference and estimating its environmental response in two rice cultivars, ‘Koshihikari’ and ‘Takanari’, based on a neural network

    Get PDF
    Canopy photosynthesis is an important component of biomass production in field-grown rice (Oryza sativa L.). Although canopy temperature differences (CTD) provide important information for evaluating canopy photosynthesis, the measurement of CTD is still a labor-intensive task. Therefore, we designed this study to establish a model for predicting CTD under different field conditions using meteorological data and evaluated the environmental response of CTD using the established model. Our study collected 2, 056, 264 CTD data points from two rice cultivars having different photosynthetic capacities, ‘Koshihikari’ and ‘Takanari’, and then used these data to create a novel model using a neural network (NN). The input variables were limited to meteorological data, and the output variable was set to CTD. The established NN model produced a prediction accuracy of R² = 0.792 and RMSE = 0.605°C. We then used this NN model to simulate the CTD response of the Koshihikari and Takanari cultivars in response to various environmental changes. These predictions revealed that Takanari had a lower CTD than Koshihikari when exposed to high relative humidity (RH) or low to moderate solar radiation (Rs). In contrast, the CTD of Koshihikari tended to be lower than that of Takanari under lower RH or higher Rs. This result implies that the advantages of the single-leaf gas exchange system in Takanari can be mitigated under extremely high-VPD conditions. Thus, our new method may provide a powerful tool to gain a better understanding of gas exchange, growth processes, and varietal differences in rice cultivated under field conditions

    Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein

    Get PDF
    Pyrroloquinoline quinone (PQQ), a redox-active o-quinone, is an important nutrient involved in numerous physiological and biochemical processes in mammals. Despite such beneficial functions, the underlying molecular mechanisms remain to be established. In the present study, using PQQ-immobilized Sepharose beads as a probe, we examined the presence of protein(s) that are capable of binding PQQ in mouse NIH/3T3 fibroblasts and identified five cellular proteins, including l-lactate dehydrogenase (LDH) A chain, as potential mammalian PQQ-binding proteins. In vitro studies using a purified rabbit muscle LDH show that PQQ inhibits the formation of lactate from pyruvate in the presence of NADH (forward reaction), whereas it enhances the conversion of lactate to pyruvate in the presence of NAD+ (reverse reaction). The molecular mechanism underlying PQQ-mediated regulation of LDH activity is attributed to the oxidation of NADH to NAD+ by PQQ. Indeed, the PQQ-bound LDH oxidizes NADH, generating NAD+, and significantly catalyzes the conversion of lactate to pyruvate. Furthermore, PQQ attenuates cellular lactate release and increases intracellular ATP levels in the NIH/3T3 fibroblasts. Our results suggest that PQQ, modulating LDH activity to facilitate pyruvate formation through its redox-cycling activity, may be involved in the enhanced energy production via mitochondrial TCA cycle and oxidative phosphorylation

    Effect of flag leaf length of erect panicle rice on the canopy structure and biomass production after heading

    Get PDF
    Increasing the yield potential of rice (Oryza sativa) is the main objective of breeders and cultivators engaged in rice improvement programs. Erect panicle (EP) rice is generally high-yielding with panicles that remain non-curved until maturation. The aim of our study was to evaluate the association of agronomic traits with rice productivity in EP rice. Here, we used the recombinant inbred lines (RILs), crosses between Liaojing5 (erect panicle japonica type) and Wanlun422 (high-yielding indica type). The yield varied among the RILs, and the flag leaf length of EP RILs was negatively correlated with the yield; however, the correlation was not significant in the non-EP RILs. The flag leaf length of the EP RILs was also negatively correlated with biomass increase during the late ripening stage. This may reflect the canopy structure of the EP RILs with short flag leaves which had a larger leaf area index in the lower strata. Additionally, the chlorophyll content in the lower leaf significantly differed among the EP RILs with flag leaves of different lengths, resulting in a higher photosynthetic ability of the lower leaf of EP RILs with short flag leaves. In the present study, an EP line, which has the shortest flag leaf, showed a higher yield than Wanlun422 in both years. EP RILs with short flag leaves might show a higher canopy photosynthetic rate in the later ripening stage; therefore, this trait could be a potential phenotypic marker for achieving high yield of EP rice

    Oxidative Deamination Activity of EGCG

    Get PDF
    (-)-Epigallocatechin-3-O-gallate (EGCG), the most abundant polyphenol in green tea, mediates the oxidative modification of proteins, generating protein carbonyls. However, the underlying molecular mechanism remains unclear. Here we analyzed the EGCG-derived intermediates generated upon incubation with the human serum albumin (HSA) and established that EGCG selectively oxidized the lysine residues via its oxidative deamination activity. In addition, we characterized the EGCG-oxidized proteins and discovered that the EGCG could be an endogenous source of the electrically-transformed proteins that could be recognized by the natural antibodies. When HSA was incubated with EGCG in the phosphate-buffered saline (pH 7.4) at 37°C, the protein carbonylation was associated with the formation of EGCG-derived products, such as the protein-bound EGCG, oxidized EGCG, and aminated EGCG. The aminated EGCG was also detected in the sera from the mice treated with EGCG in vivo. EGCG selectively oxidized lysine residues at the EGCG-binding domains in HSA to generate an oxidatively deaminated product, aminoadipic semialdehyde. In addition, EGCG treatment results in the increased negative charge of the protein due to the oxidative deamination of the lysine residues. More strikingly, the formation of protein carbonyls by EGCG markedly increased its cross-reactivity with the natural IgM antibodies. These findings suggest that many of the beneficial effects of EGCG may be partly attributed to its oxidative deamination activity, generating the oxidized proteins as a target of natural antibodies

    Open dislocation of the proximal interphalangeal joint of the little finger subsequent to chronic radial collateral ligament injury : a case report of primary ligament reconstruction with a half-slip of the flexor digitorum superficialis : Case Report

    Get PDF
    Open dislocation of the proximal interphalangeal (PIP) joint is relatively rare. We report a case of a 32-year-old man who had open dislocation of the PIP joint of the little finger while playing American football. He had a history of chronic radial collateral ligament injury. We reconstructed the radial collateral ligament with a half-slip of the flexor digitorum superficialis tendon

    A Genome-Wide Association Study Identified AFF1 as a Susceptibility Locus for Systemic Lupus Eyrthematosus in Japanese

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease that causes multiple organ damage. Although recent genome-wide association studies (GWAS) have contributed to discovery of SLE susceptibility genes, few studies has been performed in Asian populations. Here, we report a GWAS for SLE examining 891 SLE cases and 3,384 controls and multi-stage replication studies examining 1,387 SLE cases and 28,564 controls in Japanese subjects. Considering that expression quantitative trait loci (eQTLs) have been implicated in genetic risks for autoimmune diseases, we integrated an eQTL study into the results of the GWAS. We observed enrichments of cis-eQTL positive loci among the known SLE susceptibility loci (30.8%) compared to the genome-wide SNPs (6.9%). In addition, we identified a novel association of a variant in the AF4/FMR2 family, member 1 (AFF1) gene at 4q21 with SLE susceptibility (rs340630; P = 8.3×10−9, odds ratio = 1.21). The risk A allele of rs340630 demonstrated a cis-eQTL effect on the AFF1 transcript with enhanced expression levels (P<0.05). As AFF1 transcripts were prominently expressed in CD4+ and CD19+ peripheral blood lymphocytes, up-regulation of AFF1 may cause the abnormality in these lymphocytes, leading to disease onset
    corecore