19 research outputs found

    Volatile emissions from past eruptions at La Soufrière de Guadeloupe (Lesser Antilles): insights into degassing processes and atmospheric impacts

    Get PDF
    Volatiles exert a critical control on volcanic eruption style and in turn impact the near source environment and global climate. La Soufrière de Guadeloupe in the Lesser Antilles has been experiencing volcanic unrest since 1992, increasing to a peak in 2018. The lack of data available on volatiles from past eruptions, and the well-developed hydrothermal system makes understanding deep-released volatile behaviour challenging. In this study, we analyse new melt inclusions and shed light on the volatile lifecycle and impacts at La Soufrière de Guadeloupe. We focus on four eruptions: 1657 CE (Vulcanian), 1010 CE (Plinian), 341 CE (Strombolian) and 5680 BCE (Plinian), and compare to the well-studied 1530 CE (Sub-Plinian) eruption. The maximum volatile content of these eruption melt inclusions are: 4.42 wt% H2O, 1700 CO2 ppm, 780 ppm S, 0.36 wt% Cl and 680 ppm F. We observe a decrease in S content over time indicating the whole system is evolving by early separation of FeS, resulting in a lower S content in younger magma. Using the CHOSETTO v1 model, we modelled degassing paths related to decompression at low pressures, suggesting the majority of S degassing has occurred during magma ascent. We also calculate the SO2 emissions using the petrologic method, and while the 1657 CE, 1530 CE and 341 CE eruptions have negligible emissions (0.0001–0.001 Mt of SO2), the 1010 CE and 5680 BCE eruptions (0.2 Mt and 0.3 Mt of SO2, respectively) are greater. Using the SO2 emissions and plume height, we calculated the climate forcing associated with each event. The 1010 CE and 5680 BCE Plinian eruptions produced a peak global mean stratospheric aerosol optical depth (SAOD) of 0.0055 and 0.0062, respectively. This suggests, that even the largest eruptions of La Soufrière de Guadeloupe did not exert a significant climate forcing individually, but are important contributors to the volcanic stratospheric sulfate aerosol background resulting from relatively moderate but frequent explosive eruptions. Overall, this study provides new insights into degassing processes and climate forcing not only at La Soufrière de Guadeloupe, but also for other basaltic-andesitic, magmatic-hydrothermal systems. These new constraints are vital particularly if the volcano is currently in a state of unrest and will contribute to improving monitoring crisis management and long-term planning

    Transitions between explosive and effusive phases during the cataclysmic 2010 eruption of Merapi volcano, Java, Indonesia

    Get PDF
    Transitions between explosive and effusive activity are commonly observed during dome-forming eruptions and may be linked to factors such as magma influx, ascent rate and degassing. However, the interplay between these factors is complex and the resulting eruptive behaviour often unpredictable. This paper focuses on the driving forces behind the explosive and effusive activity during the well-documented 2010 eruption of Merapi, the volcano’s largest eruption since 1872. Time-controlled samples were collected from the 2010 deposits, linked to eruption stage and style of activity. These include scoria and pumice from the initial explosions, dense and scoriaceous dome samples formed via effusive activity, as well as scoria and pumice samples deposited during subplinian column collapse. Quantitative textural analysis of groundmass feldspar microlites, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size distribution analysis, reveal that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. High-An (up to ∼80 mol% An) microlites from early erupted samples reveal that the eruption was likely preceded by an influx of hotter or more mafic magma. Transitions between explosive and effusive activity in 2010 were driven primarily by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in cycles of effusive and explosive activity. Explosivity during the 2010 eruption was enhanced by the presence of a ‘plug’ of cooled magma within the shallow magma plumbing system, which acted to hinder degassing, leading to overpressure prior to initial explosive activity

    Volatile emissions from past eruptions at La Soufrière de Guadeloupe (Lesser Antilles): insights into degassing processes and atmospheric impacts

    No full text
    co-auteur étrangerInternational audienceVolatiles exert a critical control on volcanic eruption style and in turn impact the near source environment and global climate. La Soufrière de Guadeloupe in the Lesser Antilles has been experiencing volcanic unrest since 1992, increasing to a peak in 2018. The lack of data available on volatiles from past eruptions, and the well-developed hydrothermal system makes understanding deep-released volatile behaviour challenging. In this study, we analyse new melt inclusions and shed light on the volatile lifecycle and impacts at La Soufrière de Guadeloupe. We focus on four eruptions: 1657 CE (Vulcanian), 1010 CE (Plinian), 341 CE (Strombolian) and 5680 BCE (Plinian), and compare to the well-studied 1530 CE (Sub-Plinian) eruption. The maximum volatile content of these eruption melt inclusions are: 4.42 wt% H 2 O, 1700 CO 2 ppm, 780 ppm S, 0.36 wt% Cl and 680 ppm F. We observe a decrease in S content over time indicating the whole system is evolving by early separation of FeS, resulting in a lower S content in younger magma. Using the CHOSETTO v1 model, we modelled degassing paths related to decompression at low pressures, suggesting the majority of S degassing has occurred during magma ascent. We also calculate the SO 2 emissions using the petrologic method, and while the 1657 CE, 1530 CE and 341 CE eruptions have negligible emissions (0.0001-0.001 Mt of SO 2), the 1010 CE and 5680 BCE eruptions (0.2 Mt and 0.3 Mt of SO 2 , respectively) are greater. Using the SO 2 emissions and plume height, we calculated the climate forcing associated with each event. The 1010 CE and 5680 BCE Plinian eruptions produced a peak global mean stratospheric aerosol optical depth (SAOD) of 0.0055 and 0.0062, respectively. This suggests, that even the largest eruptions of La Soufrière de Guadeloupe did not exert a significant climate forcing individually, but are important contributors to the volcanic stratospheric sulfate aerosol background resulting from relatively moderate but frequent explosive eruptions. Overall, this study provides new insights into degassing processes and climate forcing not only at La Soufrière de Guadeloupe, but also for other basaltic-andesitic, magmatic-hydrothermal systems. These new constraints are vital particularly if the volcano is currently in a state of unrest and will contribute to improving monitoring crisis management and long-term planning
    corecore