102 research outputs found

    On f-vectors of Minkowski additions of convex polytopes

    Get PDF
    The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes we call perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of face lattice of the sum in terms of the face lattice of a given perfectly centered polytope. Exact face counting formulas are then obtained for perfectly centered simplices and hypercubes. The second type of results concerns tight upper bounds for the f-vectors of Minkowski sums of several polytopes.Comment: 13 pages, submitted to Discrete & Computational Geometr

    Combinatorial Redundancy Detection

    Get PDF
    The problem of detecting and removing redundant constraints is fundamental in optimization. We focus on the case of linear programs (LPs) in dictionary form, given by n equality constraints in n+d variables, where the variables are constrained to be nonnegative. A variable x_r is called redundant, if after removing its nonnegativity constraint the LP still has the same feasible region. The time needed to solve such an LP is denoted by LP(n,d). It is easy to see that solving n+d LPs of the above size is sufficient to detect all redundancies. The currently fastest practical method is the one by Clarkson: it solves n+d linear programs, but each of them has at most s variables, where s is the number of nonredundant constraints. In the first part we show that knowing all of the finitely many dictionaries of the LP is sufficient for the purpose of redundancy detection. A dictionary is a matrix that can be thought of as an enriched encoding of a vertex in the LP. Moreover - and this is the combinatorial aspect - it is enough to know only the signs of the entries, the actual values do not matter. Concretely we show that for any variable x_r one can find a dictionary, such that its sign pattern is either a redundancy or nonredundancy certificate for x_r. In the second part we show that considering only the sign patterns of the dictionary, there is an output sensitive algorithm of running time of order d (n+d) s^{d-1} LP(s,d) + d s^{d} LP(n,d) to detect all redundancies. In the case where all constraints are in general position, the running time is of order s LP(n,d) + (n+d) LP(s,d), which is essentially the running time of the Clarkson method. Our algorithm extends naturally to a more general setting of arrangements of oriented topological hyperplane arrangements

    Criss-cross methods: A fresh view on pivot algorithms

    Get PDF
    Criss-cross methods are pivot algorithms that solve linear programming problems in one phase starting with any basic solution. The first finite criss-cross method was invented by Chang, Terlaky and Wang independently. Unlike the simplex method that follows a monotonic edge path on the feasible region, the trace of a criss-cross method is neither monotonic (with respect to the objective function) nor feasibility preserving. The main purpose of this paper is to present mathematical ideas and proof techniques behind finite criss-cross pivot methods. A recent result on the existence of a short admissible pivot path to an optimal basis is given, indicating shortest pivot paths from any basis might be indeed short for criss-cross type algorithms. The origins and the history of criss-cross methods are also touched upo

    f-Vectors of Minkowski Additions of Convex Polytopes

    Get PDF
    The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes we call perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of the face lattice of the sum in terms of the face lattice of a given perfectly centered polytope. Exact face counting formulas are then obtained for perfectly centered simplices and hypercubes. The second type of results concerns tight upper bounds for the f-vectors of Minkowski sums of several polytope

    Computing Groebner Fans

    Get PDF
    This paper presents algorithms for computing the Groebner fan of an arbitrary polynomial ideal. The computation involves enumeration of all reduced Groebner bases of the ideal. Our algorithms are based on a uniform definition of the Groebner fan that applies to both homogeneous and non-homogeneous ideals and a proof that this object is a polyhedral complex. We show that the cells of a Groebner fan can easily be oriented acyclically and with a unique sink, allowing their enumeration by the memory-less reverse search procedure. The significance of this follows from the fact that Groebner fans are not always normal fans of polyhedra in which case reverse search applies automatically. Computational results using our implementation of these algorithms in the software package Gfan are included.Comment: 26 page
    • …
    corecore